鲸罗书馆

二次三项式的因式分解(精拣6篇)

jingluocom

更新时间:1个月前

使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点·难点·疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴ ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  第 1 2 页

二次三项式的因式分解 第2篇

  一、教学目标

  1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点·难点·疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴ ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  (3)公式的应用

  例1 把分解因式

  解: ∵ 方程的根是

  教师板书,学生回答。

  由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

  练习:将下列各式在实数范围因式分解。

  (1);(2)

  学生板书、笔答,评价。

  例2 用两种方程把分解因式。

  方法一,解:

  方法二,解: ,

  方法一比方法二简单,要求学生灵活选择,择其简单的方法。

  练习:将下列各式因式分解。

  学生练习,板书,选择恰当的方法,教师引导,注意以下两点:

  (1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。

  例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。

  (2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。

  (3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。

  (二)总结、扩展

  1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。

  2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。

  3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。

  四、布置作业

  教材P38A1,2。

  五、板书设计

二次三项式的因式分解 第3篇

  一、教学目标

  1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点·难点·疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴ ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  (3)公式的应用

  例1 把分解因式

  解: ∵ 方程的根是

  教师板书,学生回答。

  由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

  练习:将下列各式在实数范围因式分解。

  (1);(2)

  学生板书、笔答,评价。

  例2 用两种方程把分解因式。

  方法一,解:

  方法二,解: ,

  方法一比方法二简单,要求学生灵活选择,择其简单的方法。

  练习:将下列各式因式分解。

  学生练习,板书,选择恰当的方法,教师引导,注意以下两点:

  (1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。

  例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。

  (2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。

  (3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。

  (二)总结、扩展

  1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。

  2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。

  3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。

  四、布置作业

  教材P38A1,2。

  五、板书设计

二次三项式的因式分解 第4篇

  一、教学目标

  1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点·难点·疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴ ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  (3)公式的应用

  例1 把分解因式

  解: ∵ 方程的根是

  教师板书,学生回答。

  由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

  练习:将下列各式在实数范围因式分解。

  (1);(2)

  学生板书、笔答,评价。

  例2 用两种方程把分解因式。

  方法一,解:

  方法二,解: ,

  方法一比方法二简单,要求学生灵活选择,择其简单的方法。

  练习:将下列各式因式分解。

  学生练习,板书,选择恰当的方法,教师引导,注意以下两点:

  (1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。

  例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。

  (2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。

  (3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。

  (二)总结、扩展

  1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。

  2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。

  3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。

  四、布置作业

  教材P38A1,2。

  五、板书设计

二次三项式的因式分解 第5篇

  一、教学目标

  1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点·难点·疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴ ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  (3)公式的应用

  例1 把分解因式

  解: ∵ 方程的根是

  教师板书,学生回答。

  由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

  练习:将下列各式在实数范围因式分解。

  (1);(2)

  学生板书、笔答,评价。

  例2 用两种方程把分解因式。

  方法一,解:

  方法二,解: ,

  方法一比方法二简单,要求学生灵活选择,择其简单的方法。

  练习:将下列各式因式分解。

  学生练习,板书,选择恰当的方法,教师引导,注意以下两点:

  (1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。

  例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。

  (2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。

  (3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。

  (二)总结、扩展

  1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。

  2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。

  3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。

  四、布置作业

  教材P38A1,2。

  五、板书设计

二次三项式的因式分解 第6篇

  一、教学目标

  1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;

  2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;

  3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;

  4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;

  5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

  二、重点·难点·疑点及解决办法

  1.教学重点:用公式法将二次三项式因式分解。

  2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

  3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

  4.解决办法:二次三项式能分解因式

  二次三项式不能分解

  二次三项式分解成完全平方式

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出关于x的二次三项式?

  (2)将下列二次三项式在实数范围因式分解。

  ①;②;③。

  由③感觉比较困难,引出本节课所要解决的问题。

  2.新知讲解

  (1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

  ①;

  解:原式变形为。

  ∴ ,

  ②;

  解原方程可变为

  观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

  (2)推导出公式

  设方程的两个根为,那么,

  ∴

  这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成

  教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

  (3)公式的应用

  例1 把分解因式

  解: ∵ 方程的根是

  教师板书,学生回答。

  由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

  练习:将下列各式在实数范围因式分解。

  (1);(2)

  学生板书、笔答,评价。

  例2 用两种方程把分解因式。

  方法一,解:

  方法二,解: ,

  方法一比方法二简单,要求学生灵活选择,择其简单的方法。

  练习:将下列各式因式分解。

  学生练习,板书,选择恰当的方法,教师引导,注意以下两点:

  (1)要注意一元二次方程与二次三项式的区别与联系,例如方程,可变形为;但将二次三项式分解因式时,就不能将变形为。

  例如用求根公式求得的两个根是后,得出这就错了,这是因为丢掉了系数2。

  (2)还要注意符号方面的错误,比如下面的例子如果写成也是错误的。

  (3)一元二次方程当时,方程有两个实根。当时,方程无实根。这就决定了:当时,二次三项式在实数范围内可以分解;当时,二次三项式在实数范围内不可以分解。

  (二)总结、扩展

  1.用公式法将二次三项式因式分解的步骤是先求出方程的两个根,再将写成形式。

  2.二次三项式因式分解的条件是:当,二次三项式在实数范围内可以分解;时,二次三项式在实数范围内不可以分解。

  3.通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律。

  四、布置作业

  教材P38A1,2。

  五、板书设计

化学课《燃料和热量》优质教案

化学课《燃料和热量》教案素材  一、教学目标  ⒈知识与技能:  ⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要...

政治《文化生活》名师教学设计

政治《文化生活》教学设计  本学期我担任高二年级xx班的政治教学工作。由于学生基础参差不齐,又是初次接触哲学,不能独立的...

《责任对于你我他》学案设计

《责任对于你我他》教学设计  【目标定向】  1、情感、态度、价值观:理解有承诺就有责任,知道身份不同,责任就不同。了解...

《责任对于你我他》优质学案设计

《责任对于你我他》优质学案设计 一内容标准2.3知道责任产生于社会关系之中的相互承诺,理解承担责任的代价和不承担责任的后...

《洗手帕》名师教学设计板书

小班律动教案:洗手帕 第一篇活动目标:1、在洗手帕的过程中,启发幼儿体会洗、搓、拧、晒等动作,分辨音乐的强弱、快慢,并尝...

4一元一次方程的应用(精简14篇)

4一元一次方程的应用(精选14篇)4.4一元一次方程的应用 第1篇  5.3 用方程解决问题(2)--打折销售  学 习

圆心角、弧、弦、弦心距之间的关系(精拣9篇)

3、继续培养学生观察、比较、概括的能力;4、培养学生准确地简述自己观点的能力和计算能力.教学重点:圆心角、弧、弦、弦心距

初三数学下册《二次函数的图像与性质》教学教案(精拣3篇)

会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.  2.体会数形结合的转化,能用y=ax2

近似数(精简17篇)

使学生理解和有效数字的意义  2.给一个,能说出它精确到哪一痊,它有几个有效数字  3.使学生了解和有效数字是在实践中产

一元二次方程的根与系数的关系(精简6篇)

掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;  2.通过根与系数的教学,

复制 微信 置顶

添加微信号