鲸罗书馆

圆的周长、弧长(精简5篇)

jingluocom

更新时间:3周前

  教学重点:弧长公式.

  教学难点:正确理解弧长公式.

  教学活动设计:

  (一)复习(圆周长)

  已知⊙O半径为R,⊙O的周长C是多少?

  C=2πR

  这里π=3.14159…,这个无限不循环的小数叫做圆周率.

  由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

  提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

  (二)探究新问题、归纳结论

  教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

  研究步骤:

  (1)圆周长C=2πR

  (2)1°圆心角所对弧长= ;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长= .

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则

  (弧长公式)

  (三)理解公式、区分概念

  教师引导学生理解:

  (1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  (3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

  (四)初步应用

  例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

  分析:(1)圆环的宽度与同心圆半径有什么关系?

  (2)已知周长怎样求半径?

  (学生独立完成)

  解:设外圆的半径为R1,内圆的半径为R2,则

  d=.

  

  ∴(cm

  例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

  教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

  解:由弧长公式,得

  (mm

  所要求的展直长度

  L(mm

  答:管道的展直长度为2970mm.

  课堂练习:P176练习1、4题.

  (五)总结

  知识:圆周长、弧长公式;圆周率概念;

  能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

  (六)作业 教材P176练习2、3;P186习题3.

  圆周长、弧长(二)

  教学目标

  1、应用圆周长、弧长公式综合圆的有关知识解答问题;

  2、培养学生综合运用知识的能力和数学模型的能力;

  3、通过应用题的教学,向学生渗透理论联系实际的观点.

  教学重点:灵活运用弧长公式解有关的应用题.

  教学难点:建立数学模型.

  教学活动设计:

  (一)灵活运用弧长公式

  例1、填空:

  (1)半径为3cm,120°的圆心角所对的弧长是_______cm;

  (2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

  (3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

  (学生独立完成,在弧长公式中l、n、R知二求一.)

  答案:(1)2π;(2)24;(3)60°.

  说明:使学生灵活运用公式,为综合题目作准备.

  练习:P196练习第1题

  (二)综合应用题

  例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.

  教师引导学生建立数学模型:

  分析:(1)皮带长包括哪几部分(+DC++AB);

  (2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

  (3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等.)

  (4)如何求每一部分的长?

  这里给学生考虑的时间和空间,充分发挥学生的主体作用.

  解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

  ∵O1O2=2.1,

  ∴

  ∴(m)

  ∵,∴

  ∴的长l1(m).

  ∵∴的长(m).

  ∴皮带长l=l1+l2+2AB=5.62(m).

  (2)设大轮每分钟转数为n,则

  (转)

  答:皮带长约5.63m,大轮每分钟约转277转.

  说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力.

  巩固练习:P196练习2、3题.

  探究活动

  钢管捆扎问题

  已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度.

  请根据下列特殊情况,找出规律,并加以证明.

  提示:设钢管的根数为n,金属带的长度为Ln如图:

  当n=2时,L2=(π+2)d.

  当n=3时,L3=(π+3)d.

  当n=4时,L4=(π+4)d.

  当n=5时,L5=(π+5)d.

  当n=6时,L6=(π+6)d.

  当n=7时,L7=(π+6)d.

  当n=8时,L8=(π+7)d.

  猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

  证明略.

圆的周长、弧长 第2篇

  圆周长、弧长(一)

  教学目标:

  1、初步掌握圆周长、弧长公式;

  2、通过弧长公式的推导,培养学生探究新问题的能力;

  3、调动学生的积极性,培养学生的钻研精神;

  4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

  教学重点:弧长公式.

  教学难点:正确理解弧长公式.

  教学活动设计:

  (一)复习(圆周长)

  已知⊙O半径为R,⊙O的周长C是多少?

  C=2πR

  这里π=3.14159…,这个无限不循环的小数叫做圆周率.

  由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

  提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

  (二)探究新问题、归纳结论

  教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

  研究步骤:

  (1)圆周长C=2πR

  (2)1°圆心角所对弧长=;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长=.

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则

  (弧长公式)

  (三)理解公式、区分概念

  教师引导学生理解:

  (1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  (3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

  (四)初步应用

  例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

  分析:(1)圆环的宽度与同心圆半径有什么关系?

  (2)已知周长怎样求半径?

  (学生独立完成)

  解:设外圆的半径为R1,内圆的半径为R2,则

  d=.

  

  ∴(cm

  例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

  教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

  解:由弧长公式,得

  (mm

  所要求的展直长度

  L(mm

  答:管道的展直长度为2970mm.

  课堂练习:P176练习1、4题.

  (五)总结

  知识:圆周长、弧长公式;圆周率概念;

  能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

  (六)作业 教材P176练习2、3;P186习题3.

  圆周长、弧长(二)

  教学目标:

  1、应用圆周长、弧长公式综合圆的有关知识解答问题;

  2、培养学生综合运用知识的能力和数学模型的能力;

  3、通过应用题的教学,向学生渗透理论联系实际的观点.

  教学重点:灵活运用弧长公式解有关的应用题.

  教学难点:建立数学模型.

  教学活动设计:

  (一)灵活运用弧长公式

  例1、填空:

  (1)半径为3cm,120°的圆心角所对的弧长是_______cm;

  (2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

  (3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

  (学生独立完成,在弧长公式中l、n、R知二求一.)

  答案:(1)2π;(2)24;(3)60°.

  说明:使学生灵活运用公式,为综合题目作准备.

  练习:P196练习第1题

  (二)综合应用题

  例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.

  教师引导学生建立数学模型:

  分析:(1)皮带长包括哪几部分(+DC++AB);

  (2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

  (3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等.)

  (4)如何求每一部分的长?

  这里给学生考虑的时间和空间,充分发挥学生的主体作用.

  解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

  ∵O1O2=2.1,

  ∴

  ∴(m)

  ∵,∴

  ∴的长l1(m).

  ∵∴的长(m).

  ∴皮带长l=l1+l2+2AB=5.62(m).

  (2)设大轮每分钟转数为n,则

  (转)

  答:皮带长约5.63m,大轮每分钟约转277转.

  说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力.

  巩固练习:P196练习2、3题.

  探究活动

  钢管捆扎问题

  已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度.

  请根据下列特殊情况,找出规律,并加以证明.

  提示:设钢管的根数为n,金属带的长度为Ln如图:

  当n=2时,L2=(π+2)d.

  当n=3时,L3=(π+3)d.

  当n=4时,L4=(π+4)d.

  当n=5时,L5=(π+5)d.

  当n=6时,L6=(π+6)d.

  当n=7时,L7=(π+6)d.

  当n=8时,L8=(π+7)d.

  猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

  证明略.

圆的周长、弧长 第3篇

  圆周长、弧长(一)

  教学目标

  1、初步掌握圆周长、弧长公式;

  2、通过弧长公式的推导,培养学生探究新问题的能力;

  3、调动学生的积极性,培养学生的钻研精神;

  4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

  教学重点:弧长公式.

  教学难点:正确理解弧长公式.

  教学活动设计:

  (一)复习(圆周长)

  已知⊙O半径为R,⊙O的周长C是多少?

  C=2πR

  这里π=3.14159…,这个无限不循环的小数叫做圆周率.

  由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

  提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

  (二)探究新问题、归纳结论

  教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

  研究步骤:

  (1)圆周长C=2πR

  (2)1°圆心角所对弧长=;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长=.

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则

  (弧长公式)

  (三)理解公式、区分概念

  教师引导学生理解:

  (1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  (3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

  (四)初步应用

  例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

  分析:(1)圆环的宽度与同心圆半径有什么关系?

  (2)已知周长怎样求半径?

  (学生独立完成)

  解:设外圆的半径为R1,内圆的半径为R2,则

  d=.

  

  ∴(cm

  例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

  教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

  解:由弧长公式,得

  (mm

  所要求的展直长度

  L(mm

  答:管道的展直长度为2970mm.

  课堂练习:P176练习1、4题.

  (五)总结

  知识:圆周长、弧长公式;圆周率概念;

  能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

  (六)作业 教材P176练习2、3;P186习题3.

  圆周长、弧长(二)

  教学目标

  1、应用圆周长、弧长公式综合圆的有关知识解答问题;

  2、培养学生综合运用知识的能力和数学模型的能力;

  3、通过应用题的教学,向学生渗透理论联系实际的观点.

  教学重点:灵活运用弧长公式解有关的应用题.

  教学难点:建立数学模型.

  教学活动设计:

  (一)灵活运用弧长公式

  例1、填空:

  (1)半径为3cm,120°的圆心角所对的弧长是_______cm;

  (2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

  (3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

  (学生独立完成,在弧长公式中l、n、R知二求一.)

  答案:(1)2π;(2)24;(3)60°.

  说明:使学生灵活运用公式,为综合题目作准备.

  练习:P196练习第1题

  (二)综合应用题

  例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.

  教师引导学生建立数学模型:

  分析:(1)皮带长包括哪几部分(+DC++AB);

  (2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

  (3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等.)

  (4)如何求每一部分的长?

  这里给学生考虑的时间和空间,充分发挥学生的主体作用.

  解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

  ∵O1O2=2.1,

  ∴

  ∴(m)

  ∵,∴

  ∴的长l1(m).

  ∵∴的长(m).

  ∴皮带长l=l1+l2+2AB=5.62(m).

  (2)设大轮每分钟转数为n,则

  (转)

  答:皮带长约5.63m,大轮每分钟约转277转.

  说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力.

  巩固练习:P196练习2、3题.

  探究活动

  钢管捆扎问题

  已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度.

  请根据下列特殊情况,找出规律,并加以证明.

  提示:设钢管的根数为n,金属带的长度为Ln如图:

  当n=2时,L2=(π+2)d.

  当n=3时,L3=(π+3)d.

  当n=4时,L4=(π+4)d.

  当n=5时,L5=(π+5)d.

  当n=6时,L6=(π+6)d.

  当n=7时,L7=(π+6)d.

  当n=8时,L8=(π+7)d.

  猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

  证明略.

圆的周长、弧长 第4篇

  圆周长、弧长(一)

  教学目标:

  1、初步掌握圆周长、弧长公式;

  2、通过弧长公式的推导,培养学生探究新问题的能力;

  3、调动学生的积极性,培养学生的钻研精神;

  4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

  教学重点:弧长公式.

  教学难点:正确理解弧长公式.

  教学活动设计:

  (一)复习(圆周长)

  已知⊙O半径为R,⊙O的周长C是多少?

  C=2πR

  这里π=3.14159…,这个无限不循环的小数叫做圆周率.

  由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

  提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

  (二)探究新问题、归纳结论

  教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

  研究步骤:

  (1)圆周长C=2πR

  (2)1°圆心角所对弧长=;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长=.

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则

  (弧长公式)

  (三)理解公式、区分概念

  教师引导学生理解:

  (1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  (3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

  (四)初步应用

  例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

  分析:(1)圆环的宽度与同心圆半径有什么关系?

  (2)已知周长怎样求半径?

  (学生独立完成)

  解:设外圆的半径为R1,内圆的半径为R2,则

  d=.

  

  ∴(cm

  例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

  教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

  解:由弧长公式,得

  (mm

  所要求的展直长度

  L(mm

  答:管道的展直长度为2970mm.

  课堂练习:P176练习1、4题.

  (五)总结

  知识:圆周长、弧长公式;圆周率概念;

  能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

  (六)作业 教材P176练习2、3;P186习题3.

  第 1 2 页

圆的周长、弧长 第5篇

  圆周长、弧长(一)

  教学目标

  1、初步掌握圆周长、弧长公式;

  2、通过弧长公式的推导,培养学生探究新问题的能力;

  3、调动学生的积极性,培养学生的钻研精神;

  4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

  教学重点:弧长公式.

  教学难点:正确理解弧长公式.

  教学活动设计:

  (一)复习(圆周长)

  已知⊙O半径为R,⊙O的周长C是多少?

  C=2πR

  这里π=3.14159…,这个无限不循环的小数叫做圆周率.

  由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

  提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

  (二)探究新问题、归纳结论

  教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

  研究步骤:

  (1)圆周长C=2πR

  (2)1°圆心角所对弧长= ;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长= .

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则

  (弧长公式)

  (三)理解公式、区分概念

  教师引导学生理解:

  (1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  (3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

  (四)初步应用

  例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

  分析:(1)圆环的宽度与同心圆半径有什么关系?

  (2)已知周长怎样求半径?

  (学生独立完成)

  解:设外圆的半径为R1,内圆的半径为R2,则

  d=.

  

  ∴(cm

  例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

  教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

  解:由弧长公式,得

  (mm

  所要求的展直长度

  L(mm

  答:管道的展直长度为2970mm.

  课堂练习:P176练习1、4题.

  (五)总结

  知识:圆周长、弧长公式;圆周率概念;

  能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

  (六)作业 教材P176练习2、3;P186习题3.

  圆周长、弧长(二)

  教学目标

  1、应用圆周长、弧长公式综合圆的有关知识解答问题;

  2、培养学生综合运用知识的能力和数学模型的能力;

  3、通过应用题的教学,向学生渗透理论联系实际的观点.

  教学重点:灵活运用弧长公式解有关的应用题.

  教学难点:建立数学模型.

  教学活动设计:

  (一)灵活运用弧长公式

  例1、填空:

  (1)半径为3cm,120°的圆心角所对的弧长是_______cm;

  (2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

  (3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

  (学生独立完成,在弧长公式中l、n、R知二求一.)

  答案:(1)2π;(2)24;(3)60°.

  说明:使学生灵活运用公式,为综合题目作准备.

  练习:P196练习第1题

  (二)综合应用题

  例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转.

  教师引导学生建立数学模型:

  分析:(1)皮带长包括哪几部分(+DC++AB);

  (2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

  (3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等.)

  (4)如何求每一部分的长?

  这里给学生考虑的时间和空间,充分发挥学生的主体作用.

  解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

  ∵O1O2=2.1,

  ∴

  ∴(m)

  ∵,∴

  ∴的长l1(m).

  ∵∴的长(m).

  ∴皮带长l=l1+l2+2AB=5.62(m).

  (2)设大轮每分钟转数为n,则

  (转)

  答:皮带长约5.63m,大轮每分钟约转277转.

  说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力.

  巩固练习:P196练习2、3题.

  探究活动

  钢管捆扎问题

  已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度.

  请根据下列特殊情况,找出规律,并加以证明.

  提示:设钢管的根数为n,金属带的长度为Ln如图:

  当n=2时,L2=(π+2)d.

  当n=3时,L3=(π+3)d.

  当n=4时,L4=(π+4)d.

  当n=5时,L5=(π+5)d.

  当n=6时,L6=(π+6)d.

  当n=7时,L7=(π+6)d.

  当n=8时,L8=(π+7)d.

  猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

  证明略.

更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!

初二语文上册教学设计(精拣11篇)

八年级语文上册教学设计(精拣11第)  作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,借助教案可以让教学工作更科

《老王》教案素材设计(精拣11篇)

《老王》教案(精拣11第)  作为一名优秀的教育工作者,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。那

教案素材设计:初二语文与朱元思书(精简13篇)

教案:八年级语文与朱元思书(精简13第)  作为一名教师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该

《时间的脚印》教案素材设计(精拣12篇)

《时间的脚印》教案(精拣12第)  作为一位杰出的教职工,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学

云南的歌会教案素材设计(精拣8篇)

云南的歌会教案(精拣8第)  作为一位兢兢业业的人民教师,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活

解直角三角形(精简10篇)

知识结构:  本小节主要学习的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.  2.重点和难点分析

函数的图象(精简14篇)

使学生进一步理解自变量的取值范围和函数值的意义.  2.使学生会用描点法画出简单函数的图象.  二、教学重点、难点  重

4一元一次方程的应用(精简14篇)

4一元一次方程的应用(精选14篇)4.4一元一次方程的应用 第1篇  5.3 用方程解决问题(2)--打折销售  学 习

直线和圆的位置关系 —— 初中数学第六册教案(精简2篇)

使学生理解直线和圆的相交、相切、相离的概念。  2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。  

画正多边形(精拣10篇)

  教学重点:  (1)量角器等分圆心角来等分圆;  (2)尺规作圆内接正方形和正六边形.  教学难点:  准确作图. 

复制 微信 置顶

添加微信号