鲸罗书馆

不等式证明(精拣2篇)

jingluocom

更新时间:2个月前

第2篇

  目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。

  过程:

  一、复习:

  1.不等式的一个等价命题

  2.比较法之一(作差法)步骤:作差——变形——判断——结论

  二、作差法:(P13—14)

  1. 求证:x2 + 3 > 3x

  证:∵(x2 + 3) - 3x =

  ∴x2 + 3 > 3x

  2. 已知a, b, m都是正数,并且a < b,求证:

  证:

  ∵a,b,m都是正数,并且a 0 , b - a > 0

  ∴ 即:

  变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断?

  3. 已知a, b都是正数,并且a ¹ b,求证:a5 + b5 > a2b3 + a3b2

  证:(a5 + b5 ) - (a2b3 + a3b2) =( a5 - a3b2) + (b5 - a2b3 )

  =a3 (a2 - b2 ) - b3 (a2 - b2) =(a2 - b2 ) (a3 - b3)

  =(a + b)(a - b)2(a2 + ab + b2)

  ∵a, b都是正数,∴a + b, a2 + ab + b2 > 0

  又∵a ¹ b,∴(a - b)2 > 0 ∴(a + b)(a - b)2(a2 + ab + b2) > 0

  即:a5 + b5 > a2b3 + a3b2

  4. 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m ¹ n,问:甲乙两人谁先到达指定地点?

  解:设从出发地到指定地点的路程为S,

  甲乙两人走完全程所需时间分别是t1, t2,

  则: 可得:

  ∴

  ∵S, m, n都是正数,且m ¹ n,∴t1 - t2 < 0 即:t1 < t2

  从而:甲先到到达指定地点。

  变式:若m =n,结果会怎样?

  三、作商法

  5. 设a, b Î R+,求证:

  证:作商:

  当a =b时,

  当a > b > 0时,

  当b > a > 0时,

  ∴ (其余部分布置作业)

  作商法步骤与作差法同,不过最后是与1比较。

  四、小结:作差、作商

  五、作业: P15 练习

  P18 习题6.3 1—4

化学课《燃料和热量》优质教案

化学课《燃料和热量》教案素材  一、教学目标  ⒈知识与技能:  ⑴知道化石燃料是人类重要的自然资源,对人类生活起着重要...

政治《文化生活》名师教学设计

政治《文化生活》教学设计  本学期我担任高二年级xx班的政治教学工作。由于学生基础参差不齐,又是初次接触哲学,不能独立的...

《责任对于你我他》学案设计

《责任对于你我他》教学设计  【目标定向】  1、情感、态度、价值观:理解有承诺就有责任,知道身份不同,责任就不同。了解...

《责任对于你我他》优质学案设计

《责任对于你我他》优质学案设计 一内容标准2.3知道责任产生于社会关系之中的相互承诺,理解承担责任的代价和不承担责任的后...

《洗手帕》名师教学设计板书

小班律动教案:洗手帕 第一篇活动目标:1、在洗手帕的过程中,启发幼儿体会洗、搓、拧、晒等动作,分辨音乐的强弱、快慢,并尝...

8正弦函数、余弦函数的图像和性质(精拣3篇)

4.8正弦函数、余弦函数的图像和性质 第1篇  4.8 正弦函数、余弦函数的图像和性质(第三课时)  (一)教学具准备 

第一册等差数列(精简2篇)

(n≥1,且n∈N*).  3.等到差中项:若a、A、b成等差数列,则A叫做a、b的等差中项,且   难点:等差数列“等

高一数学函数教案(精简3篇)

已学过的函数的值域 二、讲授新课1.直接法:利用常见函数的值域来求例1.求下列函数的值域① y=3x+2(-1 x 1)

3实数与向量的积(精拣2篇)

5.3实数与向量的积 第1篇  (第一课时)  一.教学目标  1.理解并掌握实数与向量的积的意义.  2.理解两个向量

9函数y=Asin的图象(精简2篇)

4.9函数y=Asin的图象 第1篇  4.9 函数 的图像   第一课时   (一)教学具准备  直尺、投影仪.  (

复制 微信 置顶

添加微信号