鲸罗书馆

1二次函数》教学设计(精简4篇)

jingluocom

更新时间:3周前

1二次函数》教学设计(精选4篇)

《1.1二次函数》教学设计 第1篇

  二次函数的教学设计

  马玉宝

  教学内容:人教版九年义务教育初中第三册第108页

  教学目标:

  1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

  教学重点:二次函数的意义;会画二次函数图象。

  教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一. 一. 创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2. ①

  2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

  答:S=L(30-L)=30L-L2 ②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二. 二. 归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

  那么,y叫做x的二次函数.

  注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

  练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三. 三. 尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

  2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

  解:一、列表:

  x

  -3

  -2

  -1

  0

  1

  2

  3

  Y=x2

  9

  4

  1

  0

  1

  4

  9

  二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

  对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

  练习:画出函数 ; 的图象(请两个同学板演)

  X

  -3

  -2

  -1

  0

  1

  2

  3

  Y=0.5X2

  4.5

  2

  0.5

  0

  0.5

  02

  4.5

  Y=-X2

  -9

  -4

  -1

  0

  -1

  -4

  -9

  画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

  (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

  三. 三. 运用新知、变式探究

  画出函数 y=5x2图象

  学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

  x

  -0.5

  -0.4

  -0.3

  -0.2

  -0.1

  0

  0.1

  0.2

  0.3

  0.4

  0.5

  Y=5x2

  1.25

  0.8

  0.45

  0.2

  0.05

  0

  0.05

  0.2

  0.45

  0.8

  1.25

  教师出示已画好的图象让学生观察

  注意:1. 画图象应描7个左右的点,描的点越多图象越准确。

  2. 自变量X的取值应注意关于Y轴对称。

  3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

  四. 四. 归纳小结、延续探究

  教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

  一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

  五. 五. 回顾反思、总结收获

  在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

  (在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)

  二次函数的教学设计

  马玉宝

  教学内容:人教版九年义务教育初中第三册第108页

  教学目标:

  1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

  教学重点:二次函数的意义;会画二次函数图象。

  教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一. 一. 创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2. ①

  2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

  答:S=L(30-L)=30L-L2 ②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二. 二. 归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

  那么,y叫做x的二次函数.

  注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

  练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三. 三. 尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

  2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

  解:一、列表:

  x

  -3

  -2

  -1

  0

  1

  2

  3

  Y=x2

  9

  4

  1

  0

  1

  4

  9

  二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

  对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

  练习:画出函数 ; 的图象(请两个同学板演)

  X

  -3

  -2

  -1

  0

  1

  2

  3

  Y=0.5X2

  4.5

  2

  0.5

  0

  0.5

  02

  4.5

  Y=-X2

  -9

  -4

  -1

  0

  -1

  -4

  -9

  画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

  (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

  三. 三. 运用新知、变式探究

  画出函数 y=5x2图象

  学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

  x

  -0.5

  -0.4

  -0.3

  -0.2

  -0.1

  0

  0.1

  0.2

  0.3

  0.4

  0.5

  Y=5x2

  1.25

  0.8

  0.45

  0.2

  0.05

  0

  0.05

  0.2

  0.45

  0.8

  1.25

  教师出示已画好的图象让学生观察

  注意:1. 画图象应描7个左右的点,描的点越多图象越准确。

  2. 自变量X的取值应注意关于Y轴对称。

  3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

  四. 四. 归纳小结、延续探究

  教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

  一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

  五. 五. 回顾反思、总结收获

  在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

  (在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)

《1.1二次函数》教学设计 第2篇

  教学内容:人教版九年义务教育初中第三册第108页

  教学目标:

  1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

  教学重点:二次函数的意义;会画二次函数图象。

  教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一. 一. 创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2. ①

  2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

  答:S=L(30-L)=30L-L2 ②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二. 二. 归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

  那么,y叫做x的二次函数.

  注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

  练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三. 三. 尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

  2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

  解:一、列表:

  x

  -3

  -2

  -1

  0

  1

  2

  3

  Y=x2

  9

  4

  1

  0

  1

  4

  9

  二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

  对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

  练习:画出函数 ; 的图象(请两个同学板演)

  X

  -3

  -2

  -1

  0

  1

  2

  3

  Y=0.5X2

  4.5

  2

  0.5

  0

  0.5

  02

  4.5

  Y=-X2

  -9

  -4

  -1

  0

  -1

  -4

  -9

  画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

  (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

  三. 三. 运用新知、变式探究

  画出函数 y=5x2图象

  学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

  x

  -0.5

  -0.4

  -0.3

  -0.2

  -0.1

  0

  0.1

  0.2

  0.3

  0.4

  0.5

  Y=5x2

  1.25

  0.8

  0.45

  0.2

  0.05

  0

  0.05

  0.2

  0.45

  0.8

  1.25

  教师出示已画好的图象让学生观察

  注意:1. 画图象应描7个左右的点,描的点越多图象越准确。

  2. 自变量X的取值应注意关于Y轴对称。

  3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

  四. 四. 归纳小结、延续探究

  教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

  一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

  五. 五. 回顾反思、总结收获

  在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

  (在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)

《1.1二次函数》教学设计 第3篇

  二次函数的教学设计

  教学内容:人教版九年义务教育初中第三册第108页

  教学目标:

  1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

  教学重点:二次函数的意义;会画二次函数图象。

  教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一. 一. 创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2. ①

  2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

  答:S=L(30-L)=30L-L2 ②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二. 二. 归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

  那么,y叫做x的二次函数.

  注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

  练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三. 三. 尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

  2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

  解:一、列表:

  x

  -3

  -2

  -1

  0

  1

  2

  3

  Y=x2

  9

  4

  1

  0

  1

  4

  9

  二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

  对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

  练习:画出函数 ; 的图象(请两个同学板演)

  X

  -3

  -2

  -1

  0

  1

  2

  3

  Y=0.5X2

  4.5

  2

  0.5

  0

  0.5

  02

  4.5

  Y=-X2

  -9

  -4

  -1

  0

  -1

  -4

  -9

  画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

  (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

  三. 三. 运用新知、变式探究

  画出函数 y=5x2图象

  学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

  x

  -0.5

  -0.4

  -0.3

  -0.2

  -0.1

  0

  0.1

  0.2

  0.3

  0.4

  0.5

  Y=5x2

  1.25

  0.8

  0.45

  0.2

  0.05

  0

  0.05

  0.2

  0.45

  0.8

  1.25

  教师出示已画好的图象让学生观察

  注意:1. 画图象应描7个左右的点,描的点越多图象越准确。

  2. 自变量X的取值应注意关于Y轴对称。

  3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

  四. 四. 归纳小结、延续探究

  教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

  一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

  五. 五. 回顾反思、总结收获

  在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

  (在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)

《1.1二次函数》教学设计 第4篇

  【知识与技能】

  1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.

  2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.

  【过程与方法】

  经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

  【情感态度】

  体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.

  【教学重点】

  二次函数的概念.

  【教学难点】

  在实际问题中,会写简单变量之间的二次函数关系式教学过程.

  一、情境导入,初步认识

  1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0

  2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.

  二、思考探究,获取新知

  二次函数的概念及一般形式

  在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,

  b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.

  注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.

更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!

初二语文上册教学设计(精拣11篇)

八年级语文上册教学设计(精拣11第)  作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,借助教案可以让教学工作更科

《老王》教案素材设计(精拣11篇)

《老王》教案(精拣11第)  作为一名优秀的教育工作者,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。那

教案素材设计:初二语文与朱元思书(精简13篇)

教案:八年级语文与朱元思书(精简13第)  作为一名教师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该

《时间的脚印》教案素材设计(精拣12篇)

《时间的脚印》教案(精拣12第)  作为一位杰出的教职工,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学

云南的歌会教案素材设计(精拣8篇)

云南的歌会教案(精拣8第)  作为一位兢兢业业的人民教师,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活

一次函数的应用(精简2篇)

能够用一次函数的知识解决实际问题.  过程与方法:掌握用待定系数法求函数解析式的一般方法.  情感态度与价值观:继续渗透

数学教案- 函数(精拣2篇)

使学生理解自变量的取值范围和函数值的意义。  2.使学生理解求自变量的取值范围的两个依据。  3.使学生掌握关于解析式为

过三点的圆(精简12篇)

  (2)实验:应用电脑动画,使学生观察、发现新问题.  (3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图

1 图形的旋转(精简12篇)

1 图形的旋转(精选12篇)23.1 图形的旋转 第1篇  一、单元教学目标:  1、 通过实例观察,了解一个简单的图形

2.3 公式法(精简16篇)

2.3 公式法(精选16篇)22.2.3 公式法 第1篇  教学内容  1.一元二次方程求根公式的推导过程;  2.公式

复制 微信 置顶

添加微信号