2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
第 1 2 页
有理数的乘方 第2篇
1.5.1 有理数的乘方
第1课时 乘方 教学内容 课本第41页至第42页. 教学目标 1.知识与技能 (1)正确理解乘方、幂、指数、底数等概念. (2)会进行有理数乘方的运算. 2.过程与方法 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想. 3.情感态度与价值观 培养探索精神,体验小组交流、合作学习的重要性. 重、难点与关键 1.重点:正确理解乘方的意义,掌握乘方运算法则. 2.难点:正确理解乘方、底数、指数的概念,并合理运算. 3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义. 教学过程 一、复习提问 1.几个不等于零的有理数相乘,积的符号是怎样确定的? 答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少? 答:边长为2时,正方形的面积为2×2=22=4,棱长为2的正方体的体积为2×2×2=23=8. 二、新授 边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a. a·a简记作a2,读作a的平方(或二次方). a·a·a简记作a3,读作a的立方(或三次方). 让我们再看一个例子,某种细胞每过30分钟便由1个分裂成2个,经过5个时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1小时后分裂成2×2,1.5小时后分裂成2×2×2,…,5小时后要分裂10次,分裂成 =1024(个) 为了简便,可将 记作210. 一般地,几个相同的因数a相乘,记作an.即 =an 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂. 在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.
例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2). 思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢? 答:32的底数是3,指数是2,读作3的2次幂,表示3×3,结果是9;23的底数是2,指数是3,读作2的3次幂,表示2×2×2,结果是8. (-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8. (-2)3与-23的意义不相同,其结果一样. (-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2), 结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为-16. (-2)4与-24的意义不同,其结果也不同. ( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 . 因此,当底数是负数或分数时,一定要用括号把底数括起来. 一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写. 因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算. 例1:计算: (1)(-4)3;(2)(-2)4;(3)(- )5; (4)33; (5)24; (6)(- )2. 解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16 (3)(- )5=(- )×(- )×(- )×(- )×(- )=- (4)33=3×3×3=27 (5)24=2×2×2×2=16 (6)(- )2=(- )×(- )= 例2:用计算器计算(-8)5和(-3)6. 解:用带符号键(-)的计算器. 开启计算器后按照下列步骤进行: ( (-) 8 ) ∧ 5 = 显示:(-8)^ 5 -32768 即(-8)5=-32768 ( (-) 3 ) ∧ 6 = 显示:(-3)^ 6 729 即(-3)6=729 用带符号转换键 +/- 的计算器: 8 +/- ∧ 5 = 显示:-32768 3 +/- ∧ 6 = 显示:729 所以(-8)5=-32768 (-3)6=729 从例1和例2,你能发现正数的幂、负数的幂的正负有什么规律? 底数为正数时,不论指数是偶数还是奇数,其结果都是正数. 若底数为负数,当指数是偶数时,其结果是正数,当指数是奇数时其结果为负数. 实际上这可以根据有理数的乘法法则,积的符号由负因数的个数来确定,负因数是奇数个时,积为负数,负因数个数为偶数时,积为正. 因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0. 三、巩固练习 1.课本第52页练习1、2. 2.补充练习. (1)下面各式计算正确的是( ). a.-22=-4 b.-(-2)2=4 c.(-3)2=6 d.(-3)3=1 (2)下列各式是否正确,若有错误,请改正过来. ①∵43=4×3=13,34=3×4=12,∴43=34 ②∵(-3)2=-3×3=-9,-32=-3×3=-9,∴(-3)2=-92 (3)如果(-2)m>0,则(-1)m=_______;如果(- )n<0,则(-1)n=_____. 四、课堂小结 正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n 两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n相等. 五、作业布置 课本第47页习题1.5第1题,第48页第11、12题.
1.5.1 有理数的乘方
第2课时 有理数的混合运算 教学内容 课本第43页至第44页. 教学目标 1.知识与技能 掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算. 2.过程与方法 通过例题学习,发展学生观察、归纳、猜想、推理等能力. 3.情感态度与价值观 体验获得成功的感受、增加学习自信心. 重、难点与关键 1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算. 2.难点:灵活应用运算律,使计算简单、准确. 3.关键:明确题目中各个符号的意义,正确运用运算法则. 教学过程 一、复习提问 1.我们已经学习了哪几种有理数的运算? 2.有理数的乘方法则是什么? 二、新授 下面的算式里有哪几种运算?
3+50÷22×(- )-1 ① 这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算? 有理数的混合运算,应按以下运算顺序进行: 1.先乘方,再乘除,最后加减; 2.同级运算,从左往右进行; 3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 例如上面①式 3+50÷22×(- )-1 =3+50÷4×(- )-1 =3+50× ×(- )-1 =3- -1 =- 例3:计算:(1)2×(-3)3-4×(-3)+15; (2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2). 分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题. 解:(1)原式=2×(-27)-(-12)+15 =-54+12+15 =-27 (2)原式=-8+(-3)×(16+2)-9÷(-2) =-8+(-3)×18-(-4.5) =-8-54+4.5=-57.5 例4:观察下面三行数: -2,4,-8,16,-32,64,…① 0,6,-6,18,-30,66,… ② -1,2,-4,8,-16,32,… ③ (1)第①行数按什么规律排列? (2)第②、③行数与第①行数分别有什么关系? (3)取每行数的第10个数,计算这三个数的和. 分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方. 解:(1)第①行数是 -2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,… (2)对比①②两行中位置对应的数,你有什么发现?
第②行数是第①行相应的数加2. 即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,… 对比①③两行中位置对应的数,你有什么发现? 第③行数是第①行相应的数的一半,即 -2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,… (3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5. 所以每行数中的第10个数的和是: (-2)10+[(-2)10+2]+[(-2)10×0.5] =1024+(1024+2)+1024×0.5 =1024+1026+512=2562 三、巩固练习 课本第44页练习. (1)原式=1×2+(-8)÷4=2+(-2)=0 (2)原式=-125-3× =-125 (4)原式=10000+[16-(3+9)×2] =10000+(16-12×2) =10000+(16-24)=10000+(-8) =9992 四、课堂小结 在进行有理数混合运算时,一般按运算顺序进行,但有时根据运算律会使运算更简便,因此要在遵守运算顺序外,还要注意灵活运用运算律,使运算快捷、准确. 五、作业布置课本第47页至第48页习题1.5第3、8题. 教学反思 我创设实际问题情境,试学生理解乘方的意义;为了更容易理解乘方和幂的关系,我用加减乘除与和差积商作对比; 组织学生观察比较一些算式,猜想得到其中的乘方运算法则.教学时,多次提醒学生:负数的乘方,分数的乘方,在书写时一定要把整个负数(连同符号)分数用小括号括起来;让学生通过观察特例,自己总结规律.同时引导学生感受2和10的幂增长的速度非常快。在教学过程中,学生在计算时出现了各种各样的问题,延缓了教学进程。主要问题有:负数的乘方与一个数的乘方的相反数有混淆,甚至有同学把一个数的乘方的相反数理解为零减去一个数的乘方,把本来陌生的概念搞得更为复杂;分数的乘方与分子的乘方也很混淆;还有对有理数的乘法运算,甚至小学的乘法运算学生掌握得不牢固。 !
有理数的乘方 第3篇
教学目标:1掌握科学记数法的表示方法,知道科学记数法的必要性。2 通过实际问题了解科学记数法的必要性和重要性,通过比较法得出科学记数法的表示方法。 教学重点:科学记数法的表示方法及运用教学难点:科学记数法的表示方法,科学记数法的运用教学过程: 一、课前预习 105=100000 106=1000000 1010=______ 1012=____ 观察10n的特点,你发现了什么规律:10n的特点是1后面有n个0,共有n+1位。 “先见闪电,后闻雷声”,这个现象的解释是:光的传播速度大约为300000000m/s,而声音在常温下的传播速度大约为340m/s。可见光的速度大大快于声音的速度。 二、自主探索 日常生活中我们还会遇到一些特别大的数,如 有人体中大约有25000000000000个红细胞。 全世界人口大约是6100000000人 地球的陆地面积约为149000000千米2 地球的海洋面积约为361000000千米2 算一算5000000×5000000 可以发现一些足够大的数在读、写、算都不方便,根据10n的特点,我们可以这样来表示这些较大的数。 300000000=3×100000000=3×108 25000000000000=2.5×10000000000000=2.5×1013 一般地,一个大于10的数可以写成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法称为科学记数法。(scientific notation) 二、例题讲解: 例1、1972年3月发射的“先驱者10号”是人类发往太阳系外的第一艘人造太空探测器,至XX年2月人们最后一次收到它发回的信号时,它以飞离地球12XX00000km,用科学记数法表示。 例2、用科学记数法表示下列各数: (1)400320 (2)1000000 (3)-726.4 (4)0.31×104 例3、下列各数的原数是多少? (1)1.25×104 (2)-3.03×102 (3)3×105 (4)-4.2378×103 例4、一天有8.64×104秒,一年有365天,一年有多少秒?(用科学记数法表示) 三、随堂练习a 组 1、用科学记数法表示 (1)696000 (2)-1230 (3)1 (4) -5000000(5)10000 (6)0.078×105 (7)-300001 (8)-0.23×1082、太阳的直径约为1390000千米,用科学记数法表示为( ) a、1.39×104千米 b、1.39×108千米 c、1.39×106米 d、1.39×109米 b 组3、XX年6月1日零时,三峡大坝正式下闸蓄水,到上午9时,只留3个导流底孔,保留至少3410米3/秒的下泄流量,维持下游航运及发电的基本运行。自6月1日上午9时起,预计24小时流过的水量至少为米3(用科学记数法表示) 4、一天有8.64×104s.XX年有多少秒?用科学记数法表示这个数。c 组 一个人如果平均每天随便扔掉一个白色塑料方便袋,而一个白色塑料袋可以污染0.06m2的土地。照这样计算,一个100万人口的城市,仅塑料袋一项大约每天造成多少平方米土地的污染?用科学记数法表示。四、学习小结 这节课你学会了什么?
纠错栏
有理数的乘方 第4篇
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
有理数的乘方 第5篇
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
有理数的乘方 第6篇
教学目标:1、理解有理数乘方的意义,掌握有理数乘方的运算。 2、培养学生观察、分析、比较、归纳、概括的能力。运用有理数乘方运算解决 实际问题。 3、培养勤思、认真和勇于探索的精神,感知数学知识具有普遍联系性。教学重点: 理解有理数乘方的意义,掌握有理数乘方的运算。教学难点: 正确进行有理数乘方的运算。教学过程:一、课前预习 动画:手工拉面是我国的传统面食,制作时,拉面师傅将一团和好的面,揉搓成一根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折,每次对折称为一扣,如此反复操作,连续拉六、七次后便成了许多细细的面条,假如一共拉扣6次,你能算出共有多少根面条吗? 解答:2×2×2×2×2×2=64根 折纸:将一张对折再对折,直到无法对折为止,数数看,这时的纸总共有多少层? (依照上面的例子)二、探索知识: 我们把2×2×2×2×2×2记作26,读作“2的6次方” 7×7×7×7×7记作75,读作“7的5次方”
n个 一般地,a×a×a×a×…×a=an,读作“a的n次方”,a叫做底数,n叫做指数。求相同因数的积的运算叫做乘方.乘方运算的结果叫做幂 特别是,一个数的二次方,也叫做这个数的平方;一个数的三次方,也叫做这个数的立方。三、 例题讲解例1、计算(1)26 (2)73 (3)(-3)4 (4)(-4)3 (5)-34 (6)-43 例2、计算:(1)( )5 (2) ( )3 (3) (- )4 正数的任何次幂都是正数; 负数的奇数次幂是负数,负数的偶数次幂是正数。例3、把下列各式写成幂的形式(1)-(-2)·(-2)4·(-2)·(+2)(2)(-a)2aaaaa5·a·b2·b 例4、探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;……,你能说出37的个位数字是多少吗?3个位数字呢?解答:∵个位数字是四个一循环,∴37的个位数字是7,3个位数字是3四、随堂练习a组1、填空:(1)(-1)=____(2)(-1)=____(3)(-1)2n=___(4)(-1)2n+1=__2、选择(1)下列说法正确的是( )a、负数的偶次幂是正数 b、正数的奇次幂是负数c、任何小于1的数都大于它的平方 d、一个数的平方等于它的倒数,这个数为1或-1。(2)设a=(-1.8)3,b=(-1.8)4,c=(-1.8)5,则a,b,c的大小关系为( )a、ab,则a2>b2 b、若a2>b2,则a>b c、若a>b,则a3>b3 d、若a3>b3,则a2>b23、计算: (1)25 (2)(-2)5 (3)-34 (4)(-3)4 (5)(- )4 (6)( )6 (7)-32×23 (8)(-2)3×(-3)3b 组4、求3×5×7个位数字是几?5、已知a、b为有理数,且a、b满足∣a+2∣+(b-2)2=0,求的ab值学习小结这节课你学会了什么?
纠错栏
有理数的乘方 第7篇
有理数的乘方(第1课时)
教学任务分析
教学流程安排
课 前 准 备
教学过程设计
案例点评:
以在国际象棋上放米粒的故事引课,学习之后又解决这个问题,使课程既丰富多彩,又妙趣横生,也产生了前后呼应的效果。
该案例中,教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,真正体现了在活动中学习数学,在活动中“做数学”,利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣。教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识。整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣。
有理数的乘方 第8篇
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
再做一组练习(出示投影3)
计算:(1),,;
(2),,;
(3),,.
学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.
师:引导学生观察(3)题,与两者从意义上截然不同:
,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.
【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.
(三)变式训练,培养能力
(出示投影4)
计算:
(1),,,,;
(2),,,;
(3),,,.
【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.
(四)课堂小结
师:今天我们一起学习了.运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)
作乘法运算看 作乘方运算看
2×2×2=8
因数是2 底数是2
因数的个数为3 指数是3
积是8 幂是8
【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.
(五)思考题
(出示投影6)
1.3的平方是多少?-3的平方是多少?平方得9的数有几个?有没有平方得-9的有理数?
2.已知,则.
3.计算.
【教法说明】这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.
八、随堂练习
1.判断题
(1)中底数是,指数是2( )
(2)一个有理数的平方总是大于0的( )
(3)( )
(4)( )
(5)( )
(6)若,则( )
(7)当时,( )
(8)平方等于本身的数是0和1( )
2.填空题
(1)的意义是__________________,结果为________________;
(2)的意义是__________________,结果为________________;
(3)若且,则;
(4)若,则,,;
(5)平方小于10的整数有__________个,其和为___________,积为___________.
九、布置作业
课本第113页4、5.
十、板书设计
有理数的乘方 第9篇
再做一组练习(出示投影3)
计算:(1),,;
(2),,;
(3),,.
学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.
师:引导学生观察(3)题,与两者从意义上截然不同:
,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.
【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.
(三)变式训练,培养能力
(出示投影4)
计算:
(1),,,,;
(2),,,;
(3),,,.
【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.
(四)课堂小结
师:今天我们一起学习了.运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)
作乘法运算看 作乘方运算看
2×2×2=8
因数是2 底数是2
因数的个数为3 指数是3
积是8 幂是8
【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.
(五)思考题
(出示投影6)
1.3的平方是多少?-3的平方是多少?平方得9的数有几个?有没有平方得-9的有理数?
2.已知,则.
3.计算.
【教法说明】这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.
八、随堂练习
1.判断题
(1)中底数是,指数是2( )
(2)一个有理数的平方总是大于0的( )
(3)( )
(4)( )
(5)( )
(6)若,则( )
(7)当时,( )
(8)平方等于本身的数是0和1( )
2.填空题
(1)的意义是__________________,结果为________________;
(2)的意义是__________________,结果为________________;
(3)若且,则;
(4)若,则,,;
(5)平方小于10的整数有__________个,其和为___________,积为___________.
九、布置作业
课本第113页4、5.
十、板书设计
有理数的乘方 第10篇
再做一组练习(出示投影3)
计算:(1),,;
(2),,;
(3),,.
学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.
师:引导学生观察(3)题,与两者从意义上截然不同:
,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.
【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.
(三)变式训练,培养能力
(出示投影4)
计算:
(1),,,,;
(2),,,;
(3),,,.
【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.
(四)课堂小结
师:今天我们一起学习了.运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)
作乘法运算看 作乘方运算看
2×2×2=8
因数是2 底数是2
因数的个数为3 指数是3
积是8 幂是8
【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.
(五)思考题
(出示投影6)
1.3的平方是多少?-3的平方是多少?平方得9的数有几个?有没有平方得-9的有理数?
2.已知,则.
3.计算.
【教法说明】这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.
八、随堂练习
1.判断题
(1)中底数是,指数是2( )
(2)一个有理数的平方总是大于0的( )
(3)( )
(4)( )
(5)( )
(6)若,则( )
(7)当时,( )
(8)平方等于本身的数是0和1( )
2.填空题
(1)的意义是__________________,结果为________________;
(2)的意义是__________________,结果为________________;
(3)若且,则;
(4)若,则,,;
(5)平方小于10的整数有__________个,其和为___________,积为___________.
九、布置作业
课本第113页4、5.
十、板书设计
有理数的乘方 第11篇
再做一组练习(出示投影3)
计算:(1),,;
(2),,;
(3),,.
学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是-3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.
师:引导学生观察(3)题,与两者从意义上截然不同:
,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.
【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.
(三)变式训练,培养能力
(出示投影4)
计算:
(1),,,,;
(2),,,;
(3),,,.
【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.
(四)课堂小结
师:今天我们一起学习了.运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)
作乘法运算看 作乘方运算看
2×2×2=8
因数是2 底数是2
因数的个数为3 指数是3
积是8 幂是8
【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.
(五)思考题
(出示投影6)
1.3的平方是多少?-3的平方是多少?平方得9的数有几个?有没有平方得-9的有理数?
2.已知,则.
3.计算.
【教法说明】这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.
八、随堂练习
1.判断题
(1)中底数是,指数是2( )
(2)一个有理数的平方总是大于0的( )
(3)( )
(4)( )
(5)( )
(6)若,则( )
(7)当时,( )
(8)平方等于本身的数是0和1( )
2.填空题
(1)的意义是__________________,结果为________________;
(2)的意义是__________________,结果为________________;
(3)若且,则;
(4)若,则,,;
(5)平方小于10的整数有__________个,其和为___________,积为___________.
九、布置作业
课本第113页4、5.
十、板书设计
有理数的乘方 第12篇
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
有理数的乘方 第13篇
教学内容分析:
《有理数的乘方》是人教版初一上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的 加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
教学目标分析:
(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;
(2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法
(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点
教学重点:理解乘方定义,会进行有理数的乘方运算;
教学难点:有理数乘方运算的符号法则的形成与运用
教法学法分析:
教法:启发式教学,多媒体辅助教学;
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题
(1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧知,为学习新知做好铺垫
2、自主探索形成新知
观察下列各式有何特征?
(1)2×2×2×2=
(2)(-3)×(-3)×(-3)=
引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知 巩固概念
练习1、2巩固乘方定义及乘方表示的注意点,培养学(diyifanwen.com)生良好的学习习惯。例题进一步强化乘方运算
4、探索研究 发现规律
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知 巩固训练
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力
6、拓展思维 知识延伸
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结 归纳反思
锻炼学生及时总结的良好习惯和归纳能力
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;
(1)关注学生的智力参与度
(2)学生的课堂参与度
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
有理数的乘方 第14篇
今天我说课的内容是人教版初一数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。
一、 教材分析
1、教材的地位与作用:
有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的.,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
2、教学目标:
根据新课标的要求及初一学生的认知水平,我将制定本节课的教学目标如下:
⑴、知识与技能:
让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
⑵、过程与方法:
在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
⑶、情感、态度和价值观:
让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
3、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
二、教法学法
1、学情分析:
在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。
在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。
在学生特征方面:由于初一学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
2、教学策略:
根据本节课的教学目标,教材内容并结合初一学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。
三、教学过程
1、设置游戏,引入新课:
首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。
游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: ;
游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;
最后引导学生思考这两个算式的特点,引入新课。
这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。
2、合作交流,探索新知:
先让学生分组讨论下面算式特点:① ,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)
接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a 。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。
n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。
3、迁移训练,总结规律:
在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙- ﹚×﹙- ﹚×﹙- ﹚,④﹙- ﹚×﹙- ﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。
本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。
4、应用新知,尝试练习:
本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚ 、-2 、﹙ ﹚ ,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2 ,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。
第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。
5、归纳小结,形成体系:
首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。
四、设计说明
本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。
有理数的乘方 第15篇
教学目标1理解有理数乘方的概念,掌握有理数乘方的运算;2培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3渗透分类讨论思想教学重点和难点重点:有理数乘方的运算难点:有理数乘方运算的符号法则课堂教学过程设计一、从学生原有认知结构提出问题在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a作a3,读作a的立方(或a的三次方);那么,a·a·a·a可以记作什么?读作什么?a·a·a·a·a呢?在小学对于字母a我们只能取正数进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明二讲授新课1求n个相同因数的积的运算叫做乘方2乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数一般地,在an中,a取任意有理数,n取正整数应当注意,乘方是一种运算,幂是乘方运算的结果当an看作a的n次方的结果时,也可以读作a的n次幂。3.我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算例1 计算:(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;(3)0,02,03,04教师指出:2就是21,指数1通常不写让三个学生在黑板上计算引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?(1)模向观察正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零(2)纵向观察互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等(3)任何一个数的偶次幂都是什么数任何一个数的偶次幂都是非负数你能把上述的结论用数学符号语言表示吗?当a>0时,an>0(n是正整数);当a<0时, ;当a=0时,an=0(n是正整数)(以上为有理数乘方运算的符号法则)a2n=(-a)2n(n是正整数);=-(-a)2n-1(n是正整数);a2n≥0(a是有理数,n是正整数)例2 计算:(1)(-3)2,(-3)3,[-(-3)]5;(2)-32,-33,-(-3)5;(3) , 让三个学生在黑板上计算教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了课堂练习计算:(1) , , ,- , ;(2)(-1),3×22,-42×(-4)2,-23÷(-2)3;(3)(-1)n-1三、小结让学生回忆,做出小结:1乘方的有关概念2乘方的符号法则3括号的作用四、作业1计算下列各式:(-3)2;(-2)3;(-4)4; ;-0.12;-(-3)3;3·(-2)3;-6·(-3)3;- ·32;(-4)2·(-1)52填表:3a=-3,b=-5,c=4时,求下列各代数式的值:(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b24当a是负数时,判断下列各式是否成立(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .5*平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?6*若(a+1)2+|b-2|=0,求a·b3的值课堂教学设计说明1数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标2数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,an是学生通过类推得到的推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯3把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号4有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实
有理数的乘方 第16篇
教学反思需要跳出自我,反思自我。下面是由小编为大家带来的关于有理数的乘方教学反思,希望能够帮到您!
有理数的乘方教学反思一
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘即。a。a。a…a= ,记作。在教学上应该抓住以下几点:
一、乘方是一种运算。相当于“+、-、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如的结果是8。所以说的幂是8。与24一样,24=8.所以不能说8是幂,说成23的幂是8。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果 。
二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的 正数次幂是负数,负数的 偶数次幂是正数,教师教学时强调做乘方时先确定符号再计算,如 =4.
三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与的区别。注意–5的平方与1/2的平方的书写方法。
四、注意讲清有理数乘方中的常见错误。 如 ,的区别。前者是表示2的平方的相反数,后记者是表示–2的平方,写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系
有理数的乘方教学反思二
有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。
一、 要求学生深刻理解有理数乘方的意义。
即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。
二、特别注意有理数乘方的符号法则的分类讨论。
有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.
三、讲清有理数乘方中的常见易混淆点。
如 与-2 ; 与- 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。
更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!