完全平方公式的教学设计(精选13篇)
作为一位优秀的人民教师,常常需要准备教学设计,借助教学设计可以更好地组织教学活动。那么优秀的教学设计是什么样的呢?以下是小编精心整理的完全平方公式的教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
完全平方公式的教学设计 1
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、 教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的'心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
完全平方公式的教学设计 2
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
公式
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的.多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
完全平方公式的教学设计 3
学习目标:
1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:
会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:
掌握完全平方公式的.结构特征,理解公式中a、b的广泛含义。
学习过程:
一、学习准备
1、利用多项式乘以多项式计算:(a+b)2(a—b)2
2、这两个特殊形式的多项式乘法结果称为完全平方公式。
尝试用自己的语言叙述完全平方公式:
3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:
(a+b)2=a2+2ab+b2
(a—b)2=a2—2ab+b2
左边是形式,右边有三项,其中两项是形式,另一项是()
注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△2
5、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()
二、合作探究
1、利用乘法公式计算:
(3a+2b)2(2)(—4x2—1)2
分析:要分清题目中哪个式子相当于公式中的a,哪个式子相当于公式中的b
2、利用乘法公式计算:
992(2)()2
分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。
3、利用完全平方公式计算:
(a+b+c)2(2)(a—b)3
三、学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?
四、自我测试
1、下列计算是否正确,若不正确,请订正;
(1)(—1+3a)2=9a2—6a+1
(2)(3x2—)2=9x4—
(3)(xy+4)2=x2y2+16
(4)(a2b—2)2=a2b2—2a2b+4
2、利用乘法公式计算:
(1)(3x+1)2
(2)(a—3b)2
(3)(—2x+)2
(4)(—3m—4n)2
3、利用乘法公式计算:
9992
4、先化简,再求值;
(m—3n)2—(m+3n)2+2,其中m=2,n=3
五、思维拓展
1、如果x2—kx+81是一个完全平方公式,则k的值是()
2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()
3、已知(x+y)2=9,(x—y)2=5,求xy的值
4、x+y=4,x—y=10,那么xy=()
5、已知x— =4,则x2+ =()
完全平方公式的教学设计 4
教学目标
在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算.
重点、难点
根据公式的特征及问题的特征选择适当的公式计算.
教学过程
一、议一议
1.边长为(a+b)的正方形面积是多少?
2.边长分别为a、b拍的两个正方形面积和是多少?
3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答
(1)(a+b)
(2)a +b
(3)因为(a+b) = a +2ab+b ,所以(a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的.正方形面积比(2)中的正方形面积大.
二、做一做
例1.利用完全平方式计算1. 102,2. 197
师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.
学生活动:在练习本上演示此题.让学生叙述,
教师板书.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2,=200 -2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809
例2.计算:1.(x-3) -x 2.(2a+b- )(2a-b+ )
师生共同分析:1中(x-3)可利用完全平方公式.
学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9
师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.
学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.
教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.
最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-
三、试一试计算:
1.(a+b+c)
2. (a+b)
师生共同分析:
对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)]
对于(2)可化为(a+b) =(a+b)(a+b) .
学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,
教师板书.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、随堂练习
P38 1
五、小结
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.
1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b) = a ±b的错误,或(a±b) = a ±ab+b (漏掉2倍)等错误.
2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.
3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.
六、作业
课本习题1.14 P38 1、2、3.
七、教后反思
完全平方公式的教学设计 5
一、学生起点分析
学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。
二、教学任务分析
教科书在学生已经学习了整式的加法、乘法,以及平方差公式的基础上,提出了本课的具体学习任务:经历探索完全平方公式的过程,并能运用公式进行简单的计算。但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。为此,本节课的教学目标是:
1.经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2.体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3.了解完全平方公式的几何背景,培养学生的数形结合意识。
4.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
三、教学设计分析
本节课设计了七个教学环节:回顾与思考、情境引入、初识完全平方公式、再识完全平方公式、又识完全平方公式、课堂小结、布置作业。
第一环节回顾与思考
活动内容:复习已学过的平方差公式
1.平方差公式:(a+b)(a-b)=a-b;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。右边是两数的平方差。
2.应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
活动目的:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小1组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力。而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要。
实际教学效果:在复习过程中,学生能够顺利地回答出平方差公式的内容,而对于其结构特点及应用时的注意事项,通过学生之间的相互补充,绝大多数学生也得以掌握。在复习中既把旧知识得以复习,同时学生也会主动的去回顾平方差公式一节的学习过程,从而为本节课的`类比学习奠定了基础。
第二环节情境引入
活动内容:出示幻灯片,提出问题。
一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
活动目的:数学源自于生活,通过生活当中的一个实际问题,引入本节课的学习。从而在学生运用旧知计算和比较实验田的面积当中引出完全平方公式。由于实验田的总面积有多种表示方式,通过对比这些表示方式可以使学生对于公式有一个直观的认识。同时在古代人们也是通过类似的图形认识了这个公式。在列代数式解决问题的过程当中,通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发。
实际教学效果:问题提出后,学生能够主动地去寻找解决问题的方法。同时问题要求用不同的形式来表示总面积,这就要求学生从不同的角度来进行考虑,从而对于学生的思维提出了挑战。不过由于前面列代数式一部分内容的学习,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识。从而在学生的自主探索过程中引出了完全平方公式,使学生有了一个直观认识。在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽。
第三环节初识完全平方公式
活动内容:1.通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a-b)2=a2-2ab+b2.2.引导学生利用几何图形来验证两数差的完全平方公式。
3.分析完全平方公式的结构特点,并用语言来描述完全平方公式。
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。
活动目的:第一个活动是让学生在上面讨论的基础上,从代数运算的角度运用多项式的乘法法则,推导出两数和的完全平方公式,并且进一步推导出两数差的完全平方公式。在教学中学生有条理的思考和语言表达能力得以培养。
第二个活动使学生再次从几何的角度来验证两数差的完全平方公式。从而学生经历了几何解释到代数运算,再到几何解释的过程,学生的数形结合意识得以培养,并且从不同的角度推导出了公式,并且加以巩固。
第三个活动在前面的基础上,加以总结,使得学生从形式上初步地认识了完全平方公式。实际教学效果:此环节的设计符合学生的认知水平和认知过程。在第一个活动的教学中2应重视学生对于算理的理解,让学生尝试说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力。在第二个活动中既是对于第二环节用几何解释验证两数和的完全平方公式的巩固,同时也是对于学生数形结合意识的一种培养,绝大多数学生能够通过交流合作得以掌握。通过几个活动学生能够初步地掌握了完全平方公式,并在推导过程中培养了数学的基本能力。
第四环节再识完全平方公式
活动内容:例1用完全平方公式计算:
(1)(2x3)2;
(2)(4x+5y)2;
(3)(mna)22.总结口诀:首平方,尾平方,两倍乘积放中央。
3.巩固练习。
(1)计算:
11(2y)
2;(2xyx)2
;(n+1)2-n2
;(4x+0.5)2
;(2x2-3y2)225(2)纠错练习:指出下列各式中的错误,并加以改正:
(1)(2a1)2=2a22a+1;
(2)(2a+1)2=4a2+1;
(3)(a1)2=a22a1.活动目的:应用完全平方公式进行简单的计算。同时例1三个题目的设计上有一定的梯度,从而总结出进行简单计算的一般口诀,并加以巩固落实。
实际教学效果:对照公式,进行独立的简单计算,体会公式在解题中的应用,进一步熟悉公式。并通过小组交流,自我检验,巩固反馈。考察个人的实际运用能力,并及时查漏补缺。在此基础上由教师总结出口诀,帮助学生进一步认识完全平方公式,并加以巩固练习。
第五环节又识完全平方公式
活动内容:1.例2利用完全平方公式计算:
22(1)(-1-2x);(2)(-2x+1)
2.进一步完善口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。活动目的:例2是对课本内容的补充,从而使得学生从更深的一个角度来认识完全平方公式,防止解题时中间项的符号出现问题,并能在解题中通过灵活的变形来运用公式,解决问题。并对上面总结的口诀进行进一步的完善。
实际教学效果:首先放手让学生独立来解决第一个题目,学生出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的a与b,从而运用不同的方法和思路,解决问题。在活动中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发,在此基础上教师把上面总结的口诀再次完善,帮助学生突破难点,教师的主导作用得以体现。
第六环节课堂小结
活动内容:1.完全平方公式和平方差公式不同:
形式不同.
222结果不同:完全平方公式的结果是三项,即(ab)=a2ab+b;22平方差公式的结果是两项,即(a+b)(ab)=ab.2.解题过程中要准确确定a和b,对照公式原形的两边,做到不丢项、
3不弄错符号、2ab时不少乘2。
3.口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。
实际教学效果:学生畅所欲言自己的实际收获,达到了本节课的教学目标。
第七环节布置作业
1.基础训练:教材习题1.13。
222.拓展练习:(a+b)与(a-b)有怎样的联系?能否用一个等式来表示两者之间的关系,并尝试用图形来验证你的结论?
四、教学设计反思
1.本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而人为的主观裁断时间安排,其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们的应用公式的本领。因此,不但不可以省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中。对于这一点,教师一定要转变观念。
2.在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有些学生则既观察入微,又统揽全局,表现出了较强的观察力。教师要善于抓住这个契机,适当对学生进行学法指导,培养他们“既见树木,又见森林”的优良观察品质。
3.对于公式使用的条件既要把握好“度”,又要把握好“方向”。对于公式中的字母取值范围,不必过分强调(实际上,这个范围限定的太小了);而对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍。
4.教无定法,教师应根据本班的实际情况灵活安排教学步骤,切实把关注学生的发展放在首位来考虑,并依此制定合理而科学的教学计划。如,对于较好的班级,则可以优先发展,采取居高临下的教学思路,先整体把握再对比击破,或是将其纳入整体结构系统,采取类比的学习方式;而对于基础较薄弱的班级,则应以提高学习兴趣、教会学习、培养成功体验为主,千万不可拔苗助长,以防物极必反。
完全平方公式的教学设计 6
教学目标
理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。
在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。
培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。
重点难点
重点
完全平方公式的比较和运用
难点
完全平方公式的结构特点和灵活运用。
教学过程
一、复习导入
1. 说出完全平方公式的内容及作用。
2. 计算 ,除了直接用两数差的完全平方公式外,还有别的方法吗?
学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“ ”看成加数,按照两数和的完全平方公式计算,结果是一样的。
教师归纳:当我们对差与和加以区分时,两个公式是有区别的',区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。
我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。
二、新课讲解
温故知新
与 , 与 相等吗?为什么?
学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:
1.对原式进行运算,利用运算的结果来判断;
2.不对原式进行运算,只做适当变形后利用整体的方法来判断。
思考:与 , 与 相等吗?为什么?
利用整体的方法判断,把 看成一个数,则 是它的相反数,相反数的奇次方是相反的,所以它们不相等。
总结归纳得到: ;
三、典例剖析
例1运用完全平方公式计算:
(1) ; (2)
鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。
例2计算:
(1) ; (2) .
例3 计算:
(1) ; (2)
训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。
四、课堂练习
1.运用完全平方公式计算:
(1) ; (2) ;
(3) ; (4)
2.计算:
(1) ;(2) .
3. 计算:
(1) ; (2)
学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。
五、小结
师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
P50第2(3)、(4),3题
完全平方公式的教学设计 7
教学目标
经历探索完全平方公式的过程,会推导完全平方公式;
能利用完全平方公式进行简单的运算。
在探索完全平方公式的过程中,发展学生的符号感和推理能力,体会数学语言的严谨与简洁。
培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。
重点难点
重点
完全平方公式的推导和运用
难点
完全平方公式的结构特点和灵活运用。
教学过程
一、复习导入
1.说出平方差公式的内容及作用。
2.我们知道,当相乘的两个多项式有一项相同,另一项相反时,可以用平方差公式直接得到结果,大大简化了运算过程,那么当相乘的两个多项式两项都相同时,是不是也有一个公式来简化运算过程呢?这节课我们就来探索一个新的乘法公式:完全平方公式。
二、新课讲解
探究新知
计算下列各式,你能发现它们的结果有什么规律吗?
鼓励学生发表各自的看法,只要言之成理,只要是自己动脑筋发现的`,都要给予肯定,以此调动学生参与的热情。
综合学生的观察,得到:两数和的平方,等于它们的平方和,加上它们的积的两倍。
2.这个结论可以推广到任意两个数的计算上去吗?
我们可以利用多项式乘法法则来推导一下:(师生共同完成)
3.两数差的平方等于什么呢?请同学们计算。
学生一般会这样计算:
及时引导学生用语言叙述这个结果:
两数差的平方,等于它们的平方和,减去它们的积的两倍。
以上两个公式都叫做完全平方公式,它们之间有联系吗?启发学生把“-b”整个的看成一个数,用两数和的平方公式来计算,结果怎么样?结果发现两数差的平方可以用两数和的平方公式推导出来,也就是两数差的平方公式可以归属于两数和的平方公式。但为了使用方便,通常我们还是以两个公式来呈现。
完全平方公式:;
用语言叙述为:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍。
完全平方公式的理解
1.比较两数和、两数差的平方公式的异同。
学生讨论,发表各自的看法。
2.比较完全平方公式与平方差公式的不同之处。
学生发表看法后,教师特别指出完全平方公式计算的结果有三项,不要误以为是两项,比方;,是错误的。我们用图形的面积来加深一下对这个结果的理解:如图,显然整个正方形的面积由四部分组成。
三、典例剖析
例1运用完全平方公式计算:
(3);(4);
师生共同解答,教师板书。初学运用时要写清楚运用公式的步骤,熟记公式。
例2运用完全平方公式计算:
学生解答,进一步体会两个完全平方公式的异同。
四、课堂练习
1.下面各式的计算对不对?如果不对,应怎样改正?
2.运用完全平方公式计算:
(1);(2);(3);
3.运用完全平方公式计算:
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
五、小结
师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
P50第2(1)、(2),4题
完全平方公式的教学设计 8
一、教学目标:
经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。
二、教学过程:
1.检查学生的“预习知识树”,导入课题:
师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另一种“乘法公式”――完全平方公式。请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。
(活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。
2.自学检测,制造通用工具:师:下面进行自学检测.计算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。
(活动:投影显示练习题。)生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。)师:观察练习,公式中的a、b可代表什么?
生:可以表示一个数,也可以表示一个单项式、多项式。
说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律,即制造通用工具。在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。
师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题?
生:无数道。师:最终是几道题?生:一道。说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这又是“压缩”的过程,把握了变化规律才能更好地解题。
师:你会变了吗?请各小组编题。(活动:四人小组先在组内讨论、交流,再推选完成最快的两个小组出示题目,其他小组同学练习。)说明:引导学生现场出题,一是激发学生兴趣、活跃气氛,二是验证变化规律。
师:下面思考,如何计算:(a+b+c)2生1:可根据多项式乘以多项式来计算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。
师:不错。还有其他方法吗?生2:也可以把其中的(a+b)两项看成一项,变成[(a+b)+c]2的形式,就能直接运用完全平方公式了。
师:说得非常好。两种方法都可以,但哪种更简单呢?请你任选一种,完成练习。
生:(紧张地做题,同时找两个学生到黑板上板演。)师:这道题若是变为(a+b+c+d)2,你会做吗?
生:(齐答)会。师:怎么办?生1:把其中(a+b)看做一项,(c+d)看做一项,还是利用完全平方公式解题。
生2:还有其他分组方式,如把(a+c)看做一项,(b+d)看做一项,也能直接运用公式解题。
师:方法一样吗?生:一样的。师:还能变下去吗?这样可以变出多少道题?
生:无数道。师:最终是几道题?生:(齐答)一道题。师:现在,老师相信每个学生都会解这样的题了。课下,请同学们思考:如果把(a+b)2的指数变化一下,又可以变出多少道题,你能计算出来吗?
(活动:投影显示一组题目,如(a+b)3、(a+b)4……)说明:这就是老师进一步利用这个例子论证“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的.变化规律。
3.通过大量的习题验证通用工具,学生并且自造通用工具。
师:通过前面的检测,看出同学们已经基本掌握了完全平方公式。下面进入达标检测。
(活动:投影显示达标检测题)1.填空:
①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③当x=5,y=2,则(x+y)(x-y)-(x-y)2=_________。
2.计算:
①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.计算:(x+2y+3)(x+2y-3)生:(积极、主动地在作业本上完成上面练习题。)师:(巡视,批阅完成快的学生的作业,最后集体点评,只讲不会的。)说明:第2①题,可先变形为[-(2m+n)]2,再按(a+b)2的公式展开,也可直接理解成-2m与n的差,按(a-b)2计算;第2②题将(2-3a2)变形为-(3a2-2),原式可转化为-(3a2-2)2,直接运用公式计算;第2④题把(n+3)看做a
、n看做b,逆用平方差公式也是一种解法,同时训练学生的逆向思维;第3题是下节课训练内容,在这里可以提前,引导学生通过变形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,这里还是把(x+2y)看做a、3看做b,进一步验证了“通用工具”,即“解决某一类问题的一种思维方式或方法”。拓展提高还是在“变”上下功夫,要求学生能较熟练掌握,逐步达到脑算的层次,水到渠成,能力自然提高,学生就会自造“通用工具”了。
4.嫁接“知识树”,推荐作业。师:本节课你有什么收获?还有什么问题吗?
(活动:再次投影本节课“知识树”。)生:这节课我们学习、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是单项式也可以是多项式,能运用公式解题了,能力上又有新的提高.师:课下完成本节课的作业.[投影显示]思考题:计算(a+b+c)2、(a+b+c+d)2的结果,观察有什么规律,感兴趣的同学还可计算(a+b)3、(a+b)4的结果,你又能发现什么规律.预习指导:①课本第38-39页内容,重点研究例3两个题目的解题方法,能尝试独自解答课后随堂练习或习题,②设计下节课“知识树”,优化本单元“知识树”。说明:本环节是将本节课“知识树”
移植到乘法公式的单元“知识树”上,整体构建知识,同时更加强化了学生的“能力树”。作业是推荐性的作业,达标检测就是“堂堂清”,学生课下只须做好预习作业就行了,这样会有更多自由安排的时间,发展个性。
完全平方公式的教学设计 9
教学目标
1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.
2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.
3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.
教学重难点
教学重点:
1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.
2、会运用公式进行简单的计算.
教学难点:
1、完全平方公式的推导及其几何解释.
2、完全平方公式的结构特点及其应用.
教学工具
课件
教学过程
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点.
问题2:平方差公式是如何推导出来的?
问题3:平方差公式可用来解决什么问题,举例说明.
问题4:想一想、做一做,说出下列各式的结果.
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)
(1)四块面积分别为:、、、;
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,S=;
②部分看:四块面积的和,S=.
总结:通过以上探索你发现了什么?
问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?
问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述.
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
问题4:你能根据以上等式的'结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.
总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.
问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?
语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果.
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式.
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误.也不要与平方差公式混在一起.
七、作业设置
完全平方公式的教学设计 10
一、教学目标
【知识与技能】
能够运用完全平方公式对简单的多项式进行因式分解
【过程与方法】
通过对实例的探究与合作,锻炼公式推导与总结能力
【情感态度与价值观】
在合作探究中,体会到数学学习的乐趣,加强交流合作能力
二、教学重难点
【教学重点】
完全平方公式
【教学难点】
完全平方公式的推导过程与应用
三、教学过程
(1)情景设置,设疑导入
老师展示正方形广场图片,并告知已知条件:边长为a的正方形广场两个邻边有5米宽的道路,形成一个较大的`正方形广场,尝试用不同方法求解整个广场(包括道路)的大小。
预设:①(a+5)(看作一个整体)
②a+5+2×5×a(看作几个部分)
(2)师生合作,新课教学
由学生板书得出等式:(a+5)=a+5+2×5×a,提出问题:如果将5米宽,换成b米宽又能得到什么呢?(小组交流讨论)
得出结论:
进行证明:
得到完全平方公式,记忆口诀:首平方,尾平方,首尾两倍放中央。
(3)巩固提升,深化新知
(4)小结作业,及时反思
小结:请同学们谈一谈今天这节课的收获:
1.学会了完全平方公式
2.学会了简易计算平方式的能力
3.提高了与同学们合作探究的能力,体会到了合作的乐趣
作业:
公式拓展:a+b=(a+b)+()
91=()
及时复习巩固完全平方公式,并在生活中找一找完全平方公式的运用
完全平方公式的教学设计 11
一、教学目标
(1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。
(2)过程与方法目标;学生探究完全平方公式,体会数形结合。
二、教学重点:
公式结构及运用。
三、教学难点:
公式中字母AB的含义理解与公式正确运用。
四、教具:
自制长方形、正方形卡片
五、教学过程:
活动
学生活动
1、创设情景,提出问题,引入课题
(1)想一想
一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。
(1)第一天,a个男孩去看老人,老人共给他们几块糖?
(2)第二天,个女孩子去看望老人,老人共给他们多少块糖?
(3)第三天,()个孩子一起去看望老人,老人共给他们多少块糖?
(4)第三天比前二天的'孩子得到糖总数哪个多?多多少?为什么?(分组讨论)
学生四人一组讨论。
填空:
(1)第一天给孩子块糖。
(2)第二天给孩子块糖。
(3)第三天给孩子块糖。
男孩子第三天多得块糖
女孩第三天多得块糖。
活动
学生活动
(2)做一做、请同学拼图
教师巡视指导学生拼图
1、教师提问:
(1)大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现什么?
2、想一想
(1)(a+b)用多项式乘法法则说明
(2)(a—b)
3、请同学们自己叙述上面的等式
4、说一说,ab能表示什么?
(□+○)□+2□○+○
5、算一算
(1)(2X—3)(2)(4X+5Y)
请同学们分清ab
6、练一练
(1)(2X—3Y)(2)(2XY—3X)
7、试一试(a+b+c)
作业:P1351、2
学生2人一组拼图交流
2、学生观察思考
(1)大正方形边长?
(2)四块卡片的。面积分别是
(3)大正方形的总面积是多少?
3、(1)学生运用多项式乘法法则推导
(a+b)=a+2ab+b说出每一步运算理由
(2)学生自己探究交流
4、学生用语言叙述公式
5、师生共同a、b对应项教师书写
6、学生独立完成练一练展示结果
7、学生四人一组讨论交流
8、有兴趣的同学可以探
完全平方公式的教学设计 12
教学目标
1、使学生理解完全平方公式的意义,弄清完全平方公式的`形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。
2、掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)
教学方法:
对比发现法课型新授课教具投影仪
教师活动:
学生活动
复习巩固:
上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87—88页,看看你能有什么发现?
新课讲解:
(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2
a2-8a+16=a2-2×4a+42=(a-4)2
(要强调注意符号)
首先我们来试一试:(投影:牛刀小试)
1.把下列各式分解因式:
(1)x2+8x+16;(2)25a4+10a2+1
(3)(m+n)2-4(m+n)+4
(教师强调步骤的重要性,注意发现学生易错点,及时纠正)
2.把81x4-72x2y2+16y4分解因式
(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)
将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。
练习:第88页练一练第1、2题
完全平方公式的教学设计 13
一、学习目标
1.会运用完全平方公式进行一些数的简便运算
二、学习重点
运用完全平方公式进行一些数的简便运算
三、学习难点
灵活运用平方差和完全平方公式进行整式的简便运算
四、学习设计
(一)预习准备
(1)预习书p26-27
(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[
(3)预习作业:1.利用完全平方公式计算
(1)(2) (3)(4)
2.计算:
(1) (2)
(二)学习过程
平方差公式和完全平方公式的逆运用
由 反之
反之
1、填空:
(1)(2)(3)
(4)(5)
(6)
(7)若,则k=
(8)若是完全平方式,则k=
例1计算:1. 2.
现在我们从几何角度去解释完全平方公式:
从图(1)中可以看出大正方形的边长是a+b,
它是由两个小正方形和两个矩形组成,所以
大正方形的面积等于这四个图形的面积之和.
则S= =
即:
如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形HCGM的边长是b,其面积就是 ;正方形AFME的边长是 ,所以它的面积是 .从图中可以看出正方形AEMF的面积等于正方形ABCD的面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2= .这也正好符合完全平方公式.
例2.计算:
(1) (2)
变式训练:
(1) (2)
(3) (4)(x+5)2–(x-2)(x-3)
(5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)
拓展:1、(1)已知,则=
(2)已知,求________,________
(3)不论为任意有理数,的值总是()
A.负数B.零C.正数D.不小于2
2、(1)已知,求和的值。
(2)已知,求的'值。
(3).已知,求的值
回顾小结
1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。
2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。