2.正整数的倒数
3.
4.-1的正整数次幂:-1,1,-1,1,…
5.无穷多个数排成一列数:1,1,1,1,…
二、提出课题:数列
1.数列的定义:按一定次序排列的一列数(数列的有序性)
2.名称:项,序号,一般公式 ,表示法
3.通项公式: 与 之间的函数关系式
如 数列1: 数列2: 数列4:
4.分类:递增数列、递减数列;常数列;摆动数列;
有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集
N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依
次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:— 是一群孤立的点
例一 (P111 例一 略)
三、关于数列的通项公式
1.不是每一个数列都能写出其通项公式 (如数列3)
2.数列的通项公式不唯一 如 数列4可写成 和
3.已知通项公式可写出数列的任一项,因此通项公式十分重要
例二 (P111 例二)略
四、补充例题:写出下面数列的一个通项公式,使它的前 项分别是下列
各数:
1.1,0,1,0
2. , , , ,
3.7,77,777,7777
4.-1,7,-13,19,-25,31
5. , , ,
五、小结:
1.数列的有关概念
2.观察法求数列的通项公式
六、作业: 练习 P112 习题 3.1(P114)1、2
《课课练》中例题推荐2 练习 7、8
第一册数列 第2篇
3.1.1数列
教学目标
1.理解数列概念,了解数列和函数之间的关系
2.了解数列的通项公式,并会用通项公式写出数列的任意一项
3.对于比较简单的数列,会根据其前几项写出它的个通项公式
4.提高观察、抽象的能力.
教学重点
1.理解数列概念;
2.用通项公式写出数列的任意一项.
教学难点
根据一些数列的前几项抽象、归纳数列的通项公式.
教学方法
发现式教学法
教具准备
投影片l张(内容见下页)
教学过程
(1)复习回顾
师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一
下函数的定义.
生:(齐声回答函数定义).
师:函数定义(板书)
如果A、B都是非空擞 集,那么A到B的映射 就叫做A到B的函数,记作: ,其中
(Ⅱ)讲授新课
师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)
4,5,6,7,8,9,10. ①
②
1,0.1,0.01,0.001,0.0001…. ③
1,1.4,1.41,1.41,4,…. ④
-1,1,-1,1,-1,1,…. ⑤
2,2,2,2,2,
师:观察这些例子,看它们有何共同特点?
(启发学生发现数列定义)
生:归纳、总结上述例子共同特点:
1. 均是一列数;
2. 有一定次序
师:引出数列及有关定义
一、定义
1. 数列:按一定次序排列的一列数叫做数列;
2. 项:数列中的每一个数都叫做这个数列的项。
各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。
如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。
3. 数列的一般形式: ,或简记为 ,其中 是数列的第n项
生:综合上述例子,理解数列及项定义
如:例②中,这是一个数列,它的首项是“1”,“ ”是这个数列的第“3”项,等等。
师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:
项
↓ ↓ ↓ ↓ ↓
序号 1 2 3 4 5
师:看来,这个数的第一项与这一项的序号可用一个公式: 来表示其对应关系
即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项
生:结合上述其他例子,练习找其对应关系
如:数列①: =n+3(1≤n≤7)
数列③: ≥1)
数列⑤: n≥1)
4.通项公式:如果数列 的第n项 与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集 的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。
师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。
生:根据扭注通项公式画出数列①,②的图象,并总结其特点。
图3—1
特点:它们都是一群弧立的点
5.有穷数列:项数有限的数列
6.无穷数列:项数无限的数列
二、例题讲解
例1:根据下面数列 的通项公式,写出前5项:
(1)
师:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项。
解:(1)
(2)
例2:写出下面数列的一个通项公式,使它的前4项分别是下列各数:
(1)1,3,5,7; (2)
(3)
分析:
(1)项1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1
↓ ↓ ↓ ↓
序号 1 2 3 4
∴ ;
(2)序号:1 2 3 4
↓ ↓ ↓ ↓
项分母:2=1+1 3=2+1 4=3+1 5=4+1
↓ ↓ ↓ ↓
项分子: 22-1 32-1 42-1 52-1
∴ ;
(3)序号
‖ ‖ ‖ ‖
∴
(Ⅲ)课堂练习
生:思考课本P112练习1,2,3,4
师:[提问]练习3,4,并根据学生回答评析
生:板演练习1,2
(Ⅳ)课时小结
师:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。
(V)课后作业
一、课本P114习题3.1 1,2
二、1.预习内容:课本P112~P13
预习提纲:①什么叫数列的递推公式?
②递推公式与通项公式有什么异同点?
板书设计
课题
一、定义
1. 数列
2. 项
3. 一般形式
4. 通项公式
5. 有穷数列
6. 无穷数列
二、例题讲解
例1
例2
函数定义
教学后记
§3.1.2数列
教学目标
1.了解数列的递推公式,明确递推公式与通项公式的异同
2.会根据数列的递推公式写出数列的前几项
3.培养学生推理能力.
教学重点
根据数列的递推公式写出数列的前几项
教学难点
理解递推公式与通项公式的关系
教学方法
启发引导法
教具准备
投影片1张(内容见下页)
教学过程
(I)复习回顾
师:上节课我们学习了数列及有关定义,下面先来回顾一下上节课所学的主要内容.
师:[提问]上节课我们学习了哪些主要内容?
生:[回答]数列、项、表示形式、通项公式、数列分类等等.
(Ⅱ)讲授新课
师:我们所学知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题.
下面同学们来看此图:钢管堆放示意图(投影片).
生:观察图片,寻其规律,建立数学模型.
模型一:自上而下:
第1层钢管数为4;即:1 4=1+3
第2层钢管数为5;即:2 5=2+3
第3层钢管数为6;即:3 6=3+3
第4层钢管数为7;即:4 7=4+3
第5层钢管数为8;即:5 8=5+3
第6层钢管数为9;即:6 9=6+3
第7层钢管数为10;即:7 10=7+3
若用 表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且 ≤n≤7)
师:同学们运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。
师:同学们再来看此图片,是否还有其他规律可循?(启发学生寻找规律2,建立模型二)
生:自上而下每一层的钢管数都比上一层钢管数多1。
即
依此类推: (2≤n≤7)
师:对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。
一、定义:
递推公式:如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
说明:递推公式也是给出数列的一种方法。
二、例题讲解
例1:已知数列 的第1项是1,以后的各项由公式 给出,写出这个数列的前5项。
分析:题中已给出 的第1项即
递推公式:
解:据题意可知:
例2:已知数列 中, ≥3)
试写出数列的前4项
解:由已知得
(Ⅲ)课堂练习
生:课本P113练习 1,2,3(书面练习)
(板演练习1.写出下面各数列的前4项,根据前4项写出该数列的一个通项公式。
(1) ≥2)
(2) ≥3)
师:给出答案,结合学生所做进行评析。
(Ⅳ)课时小结
师:这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解。注意它与通项公式的区别在于:
1. 通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系。
2. 对于通项公式,只要将公式中的n依次取胜,2,3…即可得到相应的项。而递推公式则要已知首项(或前n项),才可求得其他的项。
(V) 课后作业
一、课本P114习题3.1 3,4
二、1.预习内容:课本P114—P116
3. 预习提纲:①什么是等差数列?②等差数列通项公式的求法?
板书设计
课题
一、定义
1. 递推公式:
三、例题讲解
例1
例2
小结:
通项公式与
递推公式区别
教学后记
更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!