2.使学生掌握由代入法解.
3. 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4. 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5. 通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程 ,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是: (a、b、c不同时为零).其中 叫做二次项, 叫做一次项, 叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1 解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得 再代入①可以求出 的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把 代入③,得 ;
把 代入③,得 .
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P57 1、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P58 1,2.
六、板书设计
由一个二元一次方程和一个二元二次方程组成的方程组 第2篇
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解.
3. 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4. 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5. 通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程 ,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是: (a、b、c不同时为零).其中 叫做二次项, 叫做一次项, 叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1 解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得 再代入①可以求出 的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把 代入③,得 ;
把 代入③,得 .
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P57 1、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P58 1,2.
六、板书设计
由一个二元一次方程和一个二元二次方程组成的方程组 第3篇
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解.
3. 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4. 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5. 通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程 ,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是: (a、b、c不同时为零).其中 叫做二次项, 叫做一次项, 叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1 解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得 再代入①可以求出 的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把 代入③,得 ;
把 代入③,得 .
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P57 1、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P58 1,2.
六、板书设计
由一个二元一次方程和一个二元二次方程组成的方程组 第4篇
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解.
3. 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4. 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5. 通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程 ,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是: (a、b、c不同时为零).其中 叫做二次项, 叫做一次项, 叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1 解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得 再代入①可以求出 的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把 代入③,得 ;
把 代入③,得 .
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P57 1、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P58 1,2.
六、板书设计
由一个二元一次方程和一个二元二次方程组成的方程组 第5篇
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解.
3. 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4. 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5. 通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程 ,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是: (a、b、c不同时为零).其中 叫做二次项, 叫做一次项, 叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1 解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得 再代入①可以求出 的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把 代入③,得 ;
把 代入③,得 .
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P57 1、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P58 1,2.
六、板书设计
由一个二元一次方程和一个二元二次方程组成的方程组 第6篇
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解由一个二元一次方程和一个二元二次方程组成的方程组.
3. 通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4. 通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5. 通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程 ,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是: (a、b、c不同时为零).其中 叫做二次项, 叫做一次项, 叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1 解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得 再代入①可以求出 的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把 代入③,得 ;
把 代入③,得 .
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P57 1、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P58 1,2.
六、板书设计
更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!