2. 将实际问题转化为数学问题,并运用二次函数的知识解决实际问题。
学习重点和难点
运用二次函数的知识解决实际问题
课前准备:
学习过程:
一、自主尝试
1.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是( )
a. b. c. d.
2.初三的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的线路为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为xm,高度为ym,求y关于x的函数解析式。
二、互动探究
例1 如图,某喷灌设备的喷头b高出地面1.2m,如果喷出的抛物线形水流的水平距离x(m)与高度y(m)之间的关系为二次函数y=a(x-4)2+2.
求:(1)二次函数的解析式
(2)水流落地点d与喷头底部a的距离(精确到0.1)
例2:某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.
(1)建立如图的平面直角坐标系,问此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
练习:
1. 小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度为2米,如果出手后铅球在空中飞行的水平距离与高度之间的关系式为,那么小明掷铅球的出手点与铅球落地点之间的水平距离大约是多少?
2.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度om为12米. 现以o点为原点,om所在直线为x轴建立直角坐标系.
(1)直接写出点m及抛物线顶点p的坐标; (2)求这条抛物线的解析式;
(3)若要搭建一个矩形“支撑架”ad- dc- cb,使c、d点在抛物线上,a、b点在地面om上,则这个“支撑架”总长的最大值是多少?
三、反馈检测:评价手册
四、课外作业:同步练习
初三上册《二次函数应用》导学案 第2篇
在期末复习期间,我们在区教研室和学校领导的指导下,通过“初备——交流——复备——再交流”,完成了《二次函数应用》的复习。通过本次活动,使我受益匪浅。
一、集体智慧胜于个人智慧。备课期间大家各显神通,献计献策。
二、备学生要胜于备教材。学生是学习的主体,老师是学习的主导。教师要因人而异,因材施教,方能取得较好的课堂效果。
三、化难为易,化繁为简。教师在课堂上应该起到把握重点,分解难点的作用。因此,备课时将问题设置成问题串,为学生搭建解决问题的台阶。
四、勤于思考,善于总结。在大量的习题中,在众多的方法下,指导学生梳理知识,归纳题型,提炼方法,总结规律。以提高学生的分析问题解决问题的能力。
更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!