- 相关推荐
(热门)高中数学教案15第
作为一名教学工作者,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?
高中数学教案1
一、教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二、目标分析:
教学重点。难点
重点:集合的含义与表示方法。
难点:表示法的恰当选择。
教学目标
1.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性。互异性。无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3.情感。态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性。
三、教法分析
1.教学方法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
2.教学手段:在教学中使用投影仪来辅助教学。
四。过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:
(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流。与此同时,教师对学生的活动给予评价。
2.活动:
(1)列举生活中的集合的例子;
(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素。
4.教师指出:集合常用大写字母A,B,C,D表示,元素常用小写字母a,b,c,d表示。
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性、互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流。让学生充分发表自己的建解。
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。
如果a是集合A的元素,就说a属于集合A
如果a不是集合A的'元素,就说a不属于集合A
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。
(3)让学生完成教材第6页练习第1题。
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。
6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言。列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合A
(3)试选择适当的方法表示下列集合:教材第6页练习第2题。
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
1.小结:在师生互动中,让学生了解或体会下例问题:
本节课我们学习了哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:
1.课后书面作业:第13页习题1.1A组第4题
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。
高中数学教案2
教学目标:
1.进一步熟练掌握比较法证明不等式;
2.了解作商比较法证明不等式;
3.提高学生解题时应变能力.
教学重点:
比较法的应用
教学难点:
常见解题技巧
教学方法启发引导式
教学活动
(一)导入新课
(教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评.
(学生活动)思考问题,回答.
[字幕]1.比较法证明不等式的步骤是怎样的?
2.比较法证明不等式的步骤中,依据、手段、目的各是什么?
3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗?
[点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题)
设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)提出问题,引导学生研究解决问题,并点评.
(学生活动)尝试解决问题.
[问题]
1.化简
2.比较与()的大小.
(学生解答问题)
[点评]
①问题1,我们采用了因式分解的方法进行简化.
②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小.
设计意图:启发学生研究问题,建立新知,形成新的知识体系.
【例题示范,学会应用】
(教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程.
(学生活动)分析,研究问题.
[字幕]例题3已知 a , b 是正数,且,求证
[分析]依题目特点,作差后重新组项,采用因式分解来变形.
证明:(见课本)
[点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.
[点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学 思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.
[字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度 m 行走,另一半时间以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,问甲、乙两人谁先到达指定地点.
[分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的.时间分别为,要回答题目中的问题,只要比较、的大小就可以了.
解:(见课本)
[点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.
设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.
【课堂练习】
(教师活动)教师打出字幕练习,要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.
(学生活动)在笔记本上完成练习,甲、乙两位同学板演.
[字幕]练习:1.设,比较与的大小.
2.已知,求证
设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.
【分析归纳、小结解法】
(教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.
(学生活动)与教师一道小结,并记录在笔记本上.
1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.
2.对差式变形的常用方法有:配方法,通分法,因式分解法等.
3.会用分类讨论的方法确定差式的符号.
4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.
设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.
(三)小结
(教师活动)教师小结本节课所学的知识及数学 思想与方法.
(学生活动)与教师一道小结,并记录笔记.
本节课学习了对差式变形的一种常用方法因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题.
通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.
设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学 思想方法.
(四)布置作业
1.课本作业:P17 7、8。
2,思考题:已知,求证
3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)
设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.
(五)课后点评
1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.
2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用
高中数学教案3
[核心必知]
1、预习教材,问题导入
根据以下提纲,预习教材P6~P9,回答下列问题、
(1)常见的程序框有哪些?
提示:终端框(起止框),输入、输出框,处理框,判断框、
(2)算法的基本逻辑结构有哪些?
提示:顺序结构、条件结构和循环结构、
2、归纳总结,核心必记
(1)程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、
在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、
(2)常见的程序框、流程线及各自表示的功能
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息
处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
○连接点连接程序框图的两部分
(3)算法的基本逻辑结构
①算法的三种基本逻辑结构
算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的
②顺序结构
顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:
[问题思考]
(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?
提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、
(2)顺序结构是任何算法都离不开的基本结构吗?
提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)程序框图的概念:
(2)常见的程序框、流程线及各自表示的'功能:
(3)算法的三种基本逻辑结构:
(4)顺序结构的概念及其程序框图的表示:
问题背景:计算1×2+3×4+5×6+…+99×100。
[思考1]能否设计一个算法,计算这个式子的值。
提示:能。
[思考2]能否采用更简洁的方式表述上述算法过程。
提示:能,利用程序框图。
[思考3]画程序框图时应遵循怎样的规则?
名师指津:
(1)使用标准的框图符号。
(2)框图一般按从上到下、从左到右的方向画。
(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。
(4)在图形符号内描述的语言要非常简练清楚。
(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。
高中数学教案4
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2. 在具体问题的`解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解 算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学教案5
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的'探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学教案6
教学要求:
理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。
教学重点:
熟练地求交点。
教学过程:
一、复习准备:
1、直线A x+B+C=0与直线A x+B+C=0,平行的充要条件是xx,相交的充要条件是xx;
重合的充要条件是xx,垂直的充要条件是xx。
2、知识回顾:充分条件、必要条件、充要条件。
二、讲授新课:
1、教学例题:
①出示例:求直线=x+1截曲线=x所得线段的中点坐标。
②由学生分析求解的思路→学生练→老师评讲
(联立方程组→消用韦达定理求x坐标→用直线方程求坐标)
③试求→订正→小结思路。→变题:求弦长
④出示例:当b为何值时,直线=x+b与曲线x+=4分别相交?相切?相离?
⑤分析:三种位置关系与两曲线的交点情况有何关系?
⑥学生试求→订正→小结思路。
⑦讨论其它解法?
解一:用圆心到直线的距离求解;
解二:用数形结合法进行分析。
⑧讨论:两条曲线F(x,)=0与F(x,)=0相交的.充要条件是什么?
如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?
(联立方程组后,一解时:相切或相交;二解时:相交;无解时:相离)
2、练习:
求过点(—2,—)且与抛物线=x相切的直线方程。
三、巩固练习:
1、若两直线x+=3a,x-=a的交点在圆x+=5上,求a的值。
(答案:a=±1)
2、求直线=2x+3被曲线=x截得的线段长。
3、课堂作业:书P72 3、4、10题。
高中数学教案7
(一)教学具准备
直尺,投影仪.
(二)教学目标
1.掌握,的定义域、值域、最值、单调区间.
2.会求含有、的三角式的定义域.
(三)教学过程
1.设置情境
研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.
2.探索研究
师:同学们回想一下,研究一个函数常要研究它的哪些性质?
生:定义域、值域,单调性、奇偶性、等等.
师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)
师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.
师:请同学思考以下几个问题:
(1)正弦、余弦函数的定义域是什么?
(2)正弦、余弦函数的值域是什么?
(3)他们最值情况如何?
(4)他们的正负值区间如何分?
(5)的解集如何?
师生一起归纳得出:
(1)正弦函数、余弦函数的定义域都是.
(2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.
(3)取最大值、最小值情况:
正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.
余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.
(4)正负值区间:
()
(5)零点:()
()
3.例题分析
【例1】求下列函数的定义域、值域:
(1);(2);(3).
解:(1),
(2)由()
又∵,∴
∴定义域为(),值域为.
(3)由(),又由
∴
∴定义域为(),值域为.
指出:求值域应注意用到或有界性的条件.
【例2】求下列函数的最大值,并求出最大值时的集合:
(1),;(2),;
(3)(4).
解:(1)当,即()时,取得最大值
∴函数的最大值为2,取最大值时的'集合为.
(2)当时,即()时,取得最大值.
∴函数的最大值为1,取最大值时的集合为.
(3)若,,此时函数为常数函数.
若时,∴时,即()时,函数取最大值,
∴时函数的最大值为,取最大值时的集合为.
(4)若,则当时,函数取得最大值.
若,则,此时函数为常数函数.
若,当时,函数取得最大值.
∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.
指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.
思考:此例若改为求最小值,结果如何?
【例3】要使下列各式有意义应满足什么条件?
(1);(2).
解:(1)由,
∴当时,式子有意义.
(2)由,即
∴当时,式子有意义.
4.演练反馈(投影)
(1)函数,的简图是()
(2)函数的最大值和最小值分别为()
A.2,-2 B.4,0 C.2,0 D.4,-4
(3)函数的最小值是()
A.B.-2 C.D.
(4)如果与同时有意义,则的取值范围应为()
A.B.C.D.或
(5)与都是增函数的区间是()
A.,B.,
C.,D.,
(6)函数的定义域________,值域________,时的集合为_________.
参考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.总结提炼
(1),的定义域均为.
(2)、的值域都是
(3)有界性:
(4)最大值或最小值都存在,且取得极值的集合为无限集.
(5)正负敬意及零点,从图上一目了然.
(6)单调区间也可以从图上看出.
(四)板书设计
1.定义域
2.值域
3.最值
4.正负区间
5.零点
例1
例2
例3
课堂练习
课后思考题:求函数的最大值和最小值及取最值时的集合
提示:
高中数学教案8
第一章:空间几何体
1.1.1柱、锥、台、球的结构特征
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7练习1、2(1)(2)
课本P8习题1.1第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8练习题1.1B组第1题
课外练习课本P8习题1.1B组第2题
1.2.1空间几何体的三视图(1课时)
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的.作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2空间几何体的直观图(1课时)
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17练习第5题
2.课外思考课本P16,探究(1)(2)
高中数学教案9
一.教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二.目标分析:
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
三.教法分析
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
四.过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合A的元素,就说a属于集合A,记作a?A.
如果a不是集合A的元素,就说a不属于集合A,记作a?A.
(2)如果用A表示“所有的安理会常任理事国”组成的'集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
五.板书分析
高中数学教案10
猴子搬香蕉
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。
河岸的距离
两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?
解答:
当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度
等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。
变量交换
不使用任何其他变量,交换a,b变量的值?
分析与解答
a = a+b
b = a-b
a= a-b
步行时间
某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。
有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到
他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?
解答:
假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。
因此,温斯顿步行了26分钟。
付清欠款
有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;
贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?
解答:
贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的.办法就是用100美元来一一付清。
贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。
一美元纸币
注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。
一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:
(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。
(2)这四人中没有一人能够兑开任何一枚硬币。
(3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要
付的帐单款额其次,一个叫内德的男士要付的账单款额最小。
(4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。
(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。
(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。
(7)随着事情的进一步发展,又出现如下的情况:
(8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。
现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?
解答:
对题意的以下两点这样理解:
(2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。
(6)中指如果A,B换过,并且A,C换过,这就是两次交换。
高中数学教案11
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能。
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解。
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。
初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)
(同学议论结果,答案是肯定的)
教师提问:什么是命题?
(学生进行回忆、思考。)
概念总结:对一件事情作出了判断的语句叫做命题。
(教师肯定了同学的回答,并作板书。)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。
(教师利用投影片,和学生讨论以下问题。)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)
(1)什么叫做命题?
可以判断真假的语句叫做命题。
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”。
“或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。
对“或”的理解,可联想到集合中“并集”的.概念。 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能。
对“且”的理解,可联想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 这两个条件都要满足的意思。
对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
命题可分为简单命题和复合命题。
不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。
(4)命题的表示:用 , , , ,……来表示。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)
我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式。
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的简单命题。
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”。
(如果时间宽裕,可让学生讨论后得出结论。)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)
4.课堂练习:第26页练习1
5.课外作业:第29页习题1.6
高中数学教案12
课题:
等比数列的概念
教学目标
1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、
2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、
3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导、
教学用具
投影仪,多媒体软件,电脑、
教学方法
讨论、谈话法、
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准、(幻灯片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的.第一步)
等比数列(板书)
1、等比数列的定义(板书)
根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、
请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:
2、对定义的认识(板书)
(1)等比数列的首项不为0;
(2)等比数列的每一项都不为0,即
问题:一个数列各项均不为0是这个数列为等比数列的什么条件?
(3)公比不为0、
用数学式子表示等比数列的定义、
是等比数列
①、在这个式子的写法上可能会有一些争议,如写成
,可让学生研究行不行,好不好;接下来再问,能否改写为
是等比数列?为什么不能?式子给出了数列第项与第
项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、
3、等比数列的通项公式(板书)
问题:用和表示第项
①不完全归纳法
②叠乘法,…,,这个式子相乘得,所以(板书)
(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)
(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、
这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。
三、小结
1、本节课研究了等比数列的概念,得到了通项公式;
2、注意在研究内容与方法上要与等差数列相类比;
3、用方程的思想认识通项公式,并加以应用。
探究活动
将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。
参考答案:
30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。
高中数学教案13
一、什么是教学案例
教学案例是真实而又典型且含有问题的事件。简单地说,一个教学案例就是一个包含有疑难问题的实际情境的描述,是一个教学实践过程中的故事,描述的是教学过程中“意料之外,情理之中的事”。
这可以从以下几个层次来理解:
教学案例是事件:教学案例是对教学过程中的一个实际情境的描述。它讲述的是一个故事,叙述的是这个教学故事的产生、发展的历程,它是对教学现象的动态性的把握。
教学案例是含有问题的事件:事件只是案例的基本素材,并不是所有的教学事件都可以成为案例。能够成为案例的事件,必须包含有问题或疑难情境在内,并且也可能包含有解决问题的方法在内。正因为这一点,案例才成为一种独特的研究成果的表现形式。
案例是真实而又典型的事件:案例必须是有典型意义的,它必须能给读者带来一定的启示和体会。案例与故事之间的根本区别是:故事是可以杜撰的,而案例是不能杜撰和抄袭的,它所反映的是真是发生的事件,是教学事件的真实再现。是对“当前”课堂中真实发生的实践情景的描述。它不能用“摇摆椅子上杜撰的事实来替代”,也不能从抽象的、概括化的理论中演绎的事实来替代。
二、如何进行教学案例研究
教学案例是教师教学行为真实、典型的记录,也是教师教学理念和教学思想的真实体现。因此它是教育教学研究的宝贵资源,也是教师之间交流的重要媒介。进行教学案例的研究是教师不断反思、改进自己教学的一种方法,能促使教师更为深刻地认识到自己工作中的重点和难点。这个过程就是教师自我教育和成长的过程。
那么如何进行教学案例研究呢?一般情况下,案例研究的程序基本有以下两个环节:案例研究的准备及实施、案例研究报告的撰写与反思。
(一)案例研究的准备与实施
1.研究主题的选择
案例研究都要有研究的重点和主题,这个主题常与教学改革的核心理念、常见的疑难问题和困惑事件相关,一般来说可以从教学的各个方面确定研究的主题,如从教师教学行为确定主题——教学材料的选择、教学中的提问、教学媒体的使用、教学评价语言、课堂教学调控行为等;也可以从学生的学习方式确定主题——探究性学习、问题解决学习、合作学习、实践性活动等。另外从学科特点、教学内容等都可以确定研究的主题。
研究者要了解当前教学的大背景,教改的大方向,要熟悉相关的《课程标准》和有针对性地作一些理论准备。还要通过有关的调查,搜集详尽的材料(如阅读教师的教学设计,进行访谈等),同时初步确定案例研究的方向、研究任务,即初步确定案例的内容是关于教学策略、学生行为或是教学技能的研究。
一般来说,案例研究主题的确定往往需要思考下面一些问题:即研究的事件是否对于自我发现更有潜力?选择的事件对学生是否有较大的情感影响(心灵是否受到震撼)?关键事件再现了前人(或自己)过去成功的行为吗?事件呈现的是一个你不能确定怎样解决的问题?事件需要你做出困难的选择吗?事件使得你必须以一种感觉不熟悉的方式或是仍在思考的方式回答吗?事件暗示一个与道德或道义上相关的问题吗?研究的主题如果反映以上的一些内容,那么这样的案例研究在自我学习、内省和深层次理解方面就可能更加富有成效。
高中数学教学案例研究的主题内容主要集中在三方面:(1)学科特点的体现:如数学思想方法的教学、数学思维品质的培养、本质属性的抽象、数学结论的推广等;(2)学生数学学习规律的探究:如数学学习习惯、解决问题的思维方式、独立思考与合作学习等;(3)教师专业知识的提升:如数学板书与电子屏幕的展示对学生思维的影响、数学语言的训练对人们思维的影响、数学知识模式化教学的优劣等。
2.案例研究的基本方法
(1)课堂观察。观察方法是指研究者按照一定的目的和计划,在课堂教学活动的'自然状态下,用自己的感官和辅助工具对研究对象进行观察研究的一种方法。它可以是教师自己对教学对象——学生,在课堂活动中的片断进行观察,也可以由其他教师来实施观察,这两种观察的目的都是为了掌握课堂教学中的第一手资料。课堂观察方法不限于用肉眼观察、耳听手记,还可利用各种工具如照相、录音、摄像等作为辅助观察的手段,以提高观察的效果。对观察的资料,可以逐字逐句整理成课堂教学实录、教学程序表、提问技巧水平检核表、提问行为类型频次表、课堂教学时间分配表等,以便以后继续分析案例提供翔实的原始材料。
(2)访谈与调查。对一些课堂教学不能观察到的师生内心活动,如教师教学的目的、教学程序的意图、教学手段的运用以及教学达标的成效等一些需要进一步了解的问题,可以通过与执教教师的交谈以及和学生的座谈,以丰富和充实课堂教学观察的材料;对学生在课堂教学活动中回答问题的心理状态、解题思路等问题,也可以在课后做一些问卷调查;对学生达标的成度、效度,也可以作一些测试调查。从这些访谈、调查的材料中,再分析课堂教学的现象,不难发现造成各种课堂现象与教师教学行为之间的因果关系,然后再具体寻找在哪个教学环节中出现问题,从中提炼出解决问题的对策。
(3)文献分析。文献分析是通过查阅文献资料,从过去和现在的有关研究成果中受到启发,从中找到课堂教学现象的理论依据,从而增强案例分析的说服力。当然,对广大第一线教师而言,这里所运用的文献分析方法,并不是为了论证新教育理论,也不是去归纳教育的宏观现象,而是通过有关教育理论文献的查阅,去进一步解读课堂教学的活动,挖掘案例中的教育思想。如在数学教学中,我们常常通过学生的动手操作来获得有关的数学概念、法则与公式,那么,为什么要这样做呢?就可以带着问题,查阅、分析有关文献资料,从学习中提高研究者自身的理论水平。
(二)案例研究报告的撰写
1.常见的案例报告格式
撰写教学案例,结构可以灵活多样,并非要千篇一律、一个模式,而是可以有不同的表现形式,如“案例背景——案例描述——案例分析”、“案例过程——案例反思”、“课例——问题——分析”、“主题与背景——情景描述——问题讨论——诠释与研究”等。当前,国内外课堂教学案例编写的格式有多种多样。但不管何种编写格式,它们都有两个共同的特点:一是对案例的客观描述;二是对案例中所述问题、关键教学事件等的分析。
下面介绍两种常用的案例编写的格式:
(1)“描述+分析”式
此格式的特点是将整个案例分为两大部分,前半部分主要为描述课堂教学活动的情景,后半部分主要针对情景中的一个问题进行理论分析并获得结论。案例的描述一般是把课堂教学活动中的某一片断像讲故事一样原原本本地、具体生动地描绘出来。描述的形式可以是一串问答式的课堂对话,也可以概括式地叙述,主要是提供一个或一连串课堂教学疑难的问题,并把教育理论、教育思想隐藏在描述之中。案例的分析部分是针对描述的情景发表个人或多人的感受,同时加以理论的分析与说明。分析方法可以是对描述中提出的一个问题,从几个方面加以分析:也可以是对描述中的几个问题,集中从一个方面加以分析。分析的目的是要从描述的情景中提炼问题的本质,讲述理论的解释,明确正确的方法,最终获得对关键教学事件的正确把握。
(2)“背景+描述+问题+诠释”式
此格式是一种要求比较高的编写格式,而且,它在实际教学中的作用也更大。通常它将整个案例分为四个部分:
A.主题与背景
主题是关键教学事件中所反映的案例主要观点,也是整篇案例的核心思想。背景主要叙述案例发生的地点、时间、人物的一些基本情况。当然,这部分的内容不宜很长,只需提纲挈领叙述清楚即可。
B.情景描述
与“描述+分析”式中的描述相同,主要突出主题所反映的课堂教学活动。
C.问题讨论
这是根据主题要求与情景描述,进行的分析、归纳、总结与提炼,包括学科知识的要点、教学法和情景特点以及案例的说明与注意事项。这部分内容主要是为案例教学服务的,目的是提高教师的认识水平与学生主动学习的能力。不同的教学观念,不同的教学手段,所提出的问题也不同。对案例中所提出的主题以及情景描述中提出的问题阐述自己的见解。
D.诠释与研究
这部分主要是用教育理论对案例情景作多角度的解读。它包括对课堂教学行为的技术资料、课堂教学实录以及教学活动背后的故事等作理论上的分析。例如,在课堂教学中,我们常看到这样的现象,课堂教学的效果高于预期的目标,反之教师期望的目标学生没有达到或有所偏离,教学内容呈现的先后与学生理解的程度、教学方法运用与学生内在动机的激发等环节存在着矛盾,这些事件的背后,必然隐含着丰富的教育思想。所以,通过诠释,挖掘这些事件背后的内在思想,揭示其教育规律就显得十分的必要。
2.案例报告撰写的关键
(1)掌握四个原则。要写好教学案例,除了平时多积累素材,学习他人的案例作品以提高写作技巧外,还应把握以下四点:
A.主题性原则:要有捕捉关键教学事件的意识,以此确定案例研究的主题。为此要注意了解新的课程改革的动向、把握适合时代要求的数学教育方式、明确学生数学学习的难点和重点,寻找数学教师专业发展的途径与规律。报告围绕主题进行情景描述和获得解决问题的策略。这种描述不是简单的教学活动实录,要反映事件发生的过程,重点描述反映关键教学事件的变化和戏剧化的情境,犹如记叙文写作,突出主题,详写重点,雕刻高潮。
案例鲜明的主题通常关系到教学的核心理念、常见问题、处理方法等等,可以说,主题就是案例的灵魂。而主题的最佳表现形式就是文题直接体现主题。因此,设计主题就要有新意、有时代感,通俗地说就是与众不同,要有独特见解、独家发现。来源于实践的教学案例并非都有同等价值,关键要看撰写者对实践的发展与理论的升华程度,包括对题目的推敲。如有的教学案例重点描述了有戏剧性的情节,用了“细节决定成败”的题目,给人耳目一新,一下子揪住了读者的心。再如,一些有创意的题目《“导之有方”方能“导之有效”》、《跳出数学教数学》、《在数学的疑难处悟成长》、《捕捉资源因势利导》等等,让人一看题目就有阅读的欲望。实践证明,在写作案例时,选择有感悟、有新意的内容,在明确主题,恰当拟题后再动笔,才能写出高质量的案例。
B.理论性原则:解决问题的策略中应当蕴含一定的教育基本原理和教育思想。实际是将自己对教育理念以及教育基本原理的理解渗透于描述的字里行间,比如学生做了什么,参与程度,投入程度如何,教师如何引导点拨,师生心理、行为变化情况等,无不体现教师的教学思想和教育基本原理。
C.叙事性原则:案例报告的书写方式是叙事式,它不同于论述式。叙事方式必须以课堂教学生动的事实为主要情节,可以夹叙夹议,也可以选择情景片段,可以是一节课中的情景,也可以是围绕一个主题的几节课的情景片段。
D.学科性原则:数学案例报告一定要体现学科的特征,要有较深刻的理性思考,要反映数学的基本思想与方法,要符合课程标准,满足教材内容的呈现方法,积极培养良好的思维习惯。就是撰写者的教育思想和教育理念在教学实践中具体体现。
(2)用好四种表述。教学案例的表述方法很多,可以归纳为以下四种方法:
A.故事式陈述法:就是教学全程或某一精彩教学片段实录,包括教师和学生的一言一行。陈述时,根据操作程序作一点“简评”,最后作“总评”。
B.以案说理:对教学过程进行陈述时,舍去与文题不相关或不重要的部分,并强化与主题相关的重要情节,尤其是引发高潮的关键行为,然后有较长篇幅的理性思考。
C.图表展示法:用图表进行统计的形式体现撰写者的教育思想,给人以一目了然的感觉,帮助读者迅速了解撰写者的写作意图,是常用的一种案例撰写方法。比如,描述学生的参与人数,投入程度,解决问题的质量等多个问题,都可以在一张或数张图表上用百分比或个(次)数进行统计。在每一张图表后,应有一段“分析”或“结论”,将撰写者的教学理念进行理性阐述,亦可在图表展示后,总的提出自己对案例的分析和建议。
D.分析讨论法:在撰写时,应汲取分析讨论中最精彩的部分做深入、细致的全面记录,最后撰写者还必须对讨论情况做一分析,或提出一些值得今后进一步思考的问题。
3.优秀案例的特征
(1)时代性:一个好的案例描述的是现实生活场景——案例的叙述要把事件置于一个时空框架之中,应该以关注今天所面临的疑难问题为着眼点,至少应该是近年发生的事情,展示的整个事实材料应该与整个时代及教学背景相照应,这样的案例读者更愿意接触。一个好的案例可以使读者有身临其境的感觉,并对案例所涉及的人产生移情作用。
(2)真实性:一个好的案例应该包括从案例所反映的对象那里引述的材料——案例写作必须持一种客观的态度,因此可引述一些口头的或书面的、正式的或非正式的材料,如对话、笔记、信函等,以增强案例的真实感和可读性。重要的事实性材料应注明资料来源。
(3)适用性:一个好的案例需要针对面临的疑难问题提出解决办法——案例不能只是提出问题,它必须提出解决问题的主要思路、具体措施,并包含着解决问题的详细过程,这应该是案例写作的重点。如果一个问题可以提出多种解决办法的话,那么最为适宜的方案,就应该是与特定的背景材料相关最密切的那一个。如果有包治百病、普遍适用的解决问题的办法,那么案例这种形式就不必要存在了。
(4)反思性:一个好的案例需要有对已经做出的解决问题的决策的评价——评价是为了给新的决策提供参考点。可在案例的开头或结尾写下案例作者对自己解决问题策略的评论,以点明案例的基本论点及其价值。
三、案例研究过程中需注意的问题
1.选材面过窄。从内容上看,多数案例是关于课堂教学甚至局限于一节课的研究,往往不能说明问题,或者在一节课中,也只会从简单的对话分析问题,做不到全方位、多角度。这说明教师对教学情境的丰富性、复杂性和联系性认识不够。
2.缺乏典型性。有的案例对教学实践没有挖掘与反思,随意摘取一些教学片段泛泛而谈、人云亦云,没有实用价值。不能够通过对某一事件现象的分析、处理、诠释,达到举一反三的效果,这样的案例对他人没什么借鉴作用。
3.主题不明确。主要体现为:
(1)主题涣散。有的案例象记流水帐,没有根据需要进行恰当的取舍,看不出作者要反映、探讨什么问题,缺乏指导性、创新性和参考性。
(2)定题过于随意。有的案例直接用案例研究依据的文题为题目,如《“三角函数”教学案例》、《“抛物线”教学案例》等,题目不鲜明、不形象,影响读者的选读和案例的传播。
4.结构不合理。案例作为一种文体,有它自己的写作结构,只有优化案例的结构,才能增强案例的可读性和指导性。如写成一般的教学设计,一般包括“备课思路、教学目标、教学重点、教学方法、课前准备、教学内容、教学过程”等内容;写成教学实录,把一堂课从头到尾详尽地记录下来,再写上作者的看法;重记录轻分析,过程描述多,评析少等等。没有创新,平淡无趣,看不出案例研究和反映的问题。
5.描述与分析脱节。有的案例描述与分析矛盾,让人不知所云;有时反映的是一种观点,分析阐明的是另一种观点,虽然不矛盾,但联系不紧密;有的分析中热衷于抄录教育理论的一些条条,脱离案例描述的事件而空谈理论,显得空泛无物。
高中数学教案14
一、活动主题的提出
根据新课改课程标准及高中数学教学要求,为切实实施素质教育,改革教学方式与方法,变教教材为用教材,有机地开展校本课程,培养学生的综合实践能力和创新能力,培养学生的探索精神和用数学的意识,以教材中的阅读与思考为素教材,推进高中数学研究性学习的进程,对该问题进行研究,旨在为深化课堂教学内容,促进性自主研究和学习,从而探讨高中数学研究性学习的实施办法。
二、活动的具体目标
1、知识目标:通过集合中元素的个数问题的研究,探求有限集合中元素个数间的关系,比较几个集合中元素个数的多少的方法。
2、能力目标:能多方面、多角度、多层面来探究问题,运用知识来解决问题,培养学生的发散思维和创新思维能力。
3、情感目标:学该课题的研究,激发学生的学习热情和学习兴趣,享受探索成功的乐趣,培养科学态度与科学精神。
三、活动的实施过程、方式
1、出示活动内容与思考的问题(5分钟)
(1)、学校小卖部进了两次货,第一次进的货是圆珠笔、钢笔、橡皮、笔记本、方便面、汽水共6种,第二次进的货是圆珠笔、铅笔、火腿肠、方便面共4种,两次一共进了几种货?回答两次一共进了10(6+4)种,对吗?应如何解答?有哪些方法?因此可以得出什么结论(集合中元素个数间的关系)?
(2)、学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。两次运动会中,这个班共有多少名同学参赛?应如何解答?由此解出以下结论(集合中元素个数间的.关系)?又如:某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人是多少?应如何解答?
(3)涉及三个及三个以上,集合的并、交问题,能用类似的结论吗?应怎样表达?如:学校开运动会,设。若参加一百米的同学有5人,参加二百米跑的同学有6人,参加四百米跑的同学有7人,参加一百、二百同学有2人,参加一百、四百的同学有3人,参加二百、四百的同学有5人,三项都参加的人有1人,求有多少人参赛?
(4)设计比较集合与集合B=中元素的个数的多少的方法。
2、活动分工及时间安排(25分钟)
全班以大组为单位(共四个大组)来研究以上4个问题。第一大组研究(1)问题,第二大组研究(2)个问题,第三大组研究(3)个问题,第四大组研究(4)个问题。要求每组由学生自行确定一位负责人,并由此同学组织具体活动,明确该同学是下步活动交流中心发言人。有余力的组可协助思考其它组的问题。教师下到各组视察,了解情况,并作必要的指导。
3、活动交流(15分钟)
请每一小组中心发言人回答各自分配的问题,全班其它同学补充,教师引导学生概括,得出结论:
列举法
问题(1)涉及的集合元素个数较少而且具体,可用列举法写出,很快可解决此问题,并由特殊到一般的思维方式概括得出:
图解法
当集合元素个数较少而不具体时,据题意画出集合的韦恩图,从而解决实际问题如问题(2),并归纳得出:这一结论。
数形结合法
利用集合间的关系,结合示意图,据未知可设适当的未知数,建立方程求解,如问题(2)中的第二个问题。设喜爱篮球运动但不喜爱乒乓球运动的人数为x,则两项都喜爱的有(15-x)人,喜爱乒乓球而不喜爱篮球的有[10-(15-x)]人,据题意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜爱篮球运动但不喜爱乒乓球运动的有12人。
归纳、猜想法
通过对问题(3)的求解,并结合问题(1)、(2)的求解,归纳、猜想出:。
概念派生法
通过问题(4)的研究求解,大部分学生较易得出A,因此,由真子集的概念得出集合B的元素的个数少于集合A的元素的个数。这个结论是由概念的内涵派生出来的。
“对应”法
经研究讨论,同学中有“集合A的元素个数等于集合B的元素个数”的结论。少数同学运用“对应”思想:,显然有此结论。这是一个多好的想法啊!
四、活动评价
充分运用高中数学子教材资源“阅读与思考”,广泛开展第二课堂活动,能很好地调动学生的学习兴趣,能很好地开发学生的创造潜能,有助于学生探究能力和创新能力的提高。通过本课题的研究,至少有以下成功之处:第一、深化了课堂知识,进一步巩固和拓展了所学知识;第二、培养了学生探究能力,很好地改变了学生的学习方式、方法;第三、增强了学生运用知识解决问题的意识:该课题以解决问题为背景,通过分工与合作和恰当地引导,学生用知识的意识明显增强,运用知识解决问题的能力明显提高;第四、培养了学生的思维品质。通过问题(4)的研究,我们得出了不一样的结论,但都有道理,学生向引发争议,学生的批判性思维得到较好的发展。
五、注意事项
1、教师课题准备要充分。要认真钻研材料;查阅相关资料或研究成果;作好周密的活动计划。切忌无准备或准备不充分就上课。
2、避免“活动研究课”上课学科化,要充分地让学生自主的活动,不人为地牵制学生。
3、积极引导学生搞好“交流——合作”环节的活动,充分听取学生的意见,让学生自己总结作法和研究成果,切忌教师包办,强加于人。
4、坚持引导学生写好活动总结和体会,归纳研究方法与成果,忌只管上课不管下课,课后不巩固。
高中数学教案15
教学目标:
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义。
(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力。
教学重点:
子集、补集的概念
教学难点:
弄清元素与子集、属于与包含之间的区别
教学用具:
幻灯机
教学过程设计
(一)导入新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。
【提出问题】(投影打出)
已知xx,xx,xx,问:
1、哪些集合表示方法是列举法。
2、哪些集合表示方法是描述法。
3、将集M、集从集P用图示法表示。
4、分别说出各集合中的元素。
5、将每个集合中的元素与该集合的关系用符号表示出来、将集N中元素3与集M的关系用符号表示出来。
6、集M中元素与集N有何关系、集M中元素与集P有何关系。
【找学生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(笔练结合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(笔练结合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题、
(二)新授知识
1、子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作:xx读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:AxxB或BxxA、
性质:①xx(任何一个集合是它本身的子集)
②xx(空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素、由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例:xx,可见,集合xx,是指A、B的所有元素完全相同。
(3)真子集:对于两个集合A与B,如果xx,并且xx,我们就说集合A是集合B的真子集,记作:xx(或xx),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B。
【提问】
(1)xx写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2)xx判断下列写法是否正确
①xxAxx②xxAxx③xx④AxxA
性质:
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,则xxA;
(2)如果xx,xx,则xx。
例1xx写出集合xx的所有子集,并指出其中哪些是它的真子集、
解:集合xx的.所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“xx”与“xx”:元素与集合之间是属于关系;集合与集合之间是包含关系。如xxR,{1}xx{1,2,3}
②{0}与xx:{0}是含有一个元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能写成xx={0},xx∈{0}
例2xx见教材P8(解略)
例3xx判断下列说法是否正确,如果不正确,请加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx与xx不能同时成立、
解:(1)xx不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确、空集是任何非空集合的真子集;
(3)不正确、xx与xx表示同一集合;
(4)不正确、xx的所有子集是xx;
(5)正确
(6)不正确、当xx时,xx与xx能同时成立、
例4xx用适当的符号(xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)设xx,xx,xx,则AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C、
【练习】教材P9
用适当的符号(xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提问:见教材P9例子
(二)xx全集与补集
1、补集:一般地,设S是一个集合,A是S的一个子集(即xx),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作xx,即
、
A在S中的补集xx可用右图中阴影部分表示、
性质:xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则xxSA={2,4,6};
(2)若A={0},则xxNA=N;
(3)xxRQ是无理数集。
2、全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用xx表示。
注:xx是对于给定的全集xx而言的,当全集不同时,补集也会不同。
例如:若xx,当xx时,xx;当xx时,则xx。
例5xx设全集xx,xx,xx,判断xx与xx之间的关系。
解:
练习:见教材P10练习
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的补集xx;
(2)如果全集,xx,那么xx的补集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小结:本节课学习了以下内容:
1、五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)
2、五条性质
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一个集合是它本身的子集。
(4)如果xx,xx,则xx、
(5)xxS(xxSA)=A
3、两组易混符号:(1)“xx”与“xx”:(2){0}与
(四)课后作业:见教材P10习题1、2
篇更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!