16.1从分数到分式 第1篇
课题: 从分数到分式
课时: 一课时
知识与技能目标
1.使学生了解分式的概念,明确分母不得为零是分
式概念的组成部分.
2.使学生能够求出分式有意义的条件.
过程与方法目标
能用分式表示现实情境中的数量关系,体会分式是
表示现实世界中一类量的数学模型,进一步发展符号
感,通过类比分数研究分式的教学,引导学生运用类比
转化的思想方法研究解决问题.
教学重点和难点
准确理解分式的意义,明确分母不得为零既是本节
的重点,又是本节的难点.
教学方法: 探究与讲授结合.
教学过程
活动一 情境引入:
一般轮船在静水中的最大航速为20千米/时,它沿江
以最大航速顺流流航行100千米所用时间,与以最大航
速逆水航行60千米所用时间相等,江水的流速为多少?
活动二 思考
活动三 观察
(1) 由学生分组讨论分式的定义,对于“两个整式相
除叫做分式”等错误,由学生举反例一一加以纠正,得
到结论:
的分母.
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题.
①两个整式相除
②.分母中含有字母.
(4)整式与分数的不同.分工具有一般性.
活动四 分式中的分母应满足什么条件?
如同分数一样,分式的分母不能为零
活动五 : 1、求分式的值.2、何时分式的值为零?
例1(1)当a=1,2时,求分式 的值;
解:(1)当a=1时,
当a=2时
例2当x取何值时,下列分式有意义?
思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?
例3 当x取何值时,下列分式的值为零?
解:由分子x+3=0得x=-3.
而当x=-3时,分母2x-7=-6-7≠0.
∴当x=-3时,原分式值为零.
例4 当x 取何值是分式 的值为零。
解:由分子|x| - 1 =0得x = ±1
当x = 1时 x+1≠0
当x=-1时x+1=0,分式无意义。
∴当x = 1时原分式的值为零。
小结:若使分式的值为零,需满足两个条件:
①分子值等于零;②分母值不等于零.
活动六 课堂练习p课本第6页1——3
活动七 课堂小结
本节课你学到了哪些知识和方法?
1.分式的定义。
2、分式与分数的区别.
3.分式何时有意义?
4.分式何时值为零?
作业
教材p10页 第1—3题
教学反思:
16.1从分数到分式 第2篇
从分数到分式
一、 教学目标
1. 了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
3.认知难点与突破方法
难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.
三、例、习题的意图分析
本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.
1.本节进一步提出P4[思考]让学生自己依次填出: , , , .为下面的[观察]提供具体的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.
希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .
2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.
3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.
四、课堂引入
1.让学生填写P4[思考],学生自己依次填出: , , , .
2.学生看P3的问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用实践,与以航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .
3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?
五、例题讲解
P5例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1
六、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的值为0?
(1) (2) (3)
七、课后练习
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
八、答案:
六、1.整式:9x+4, , 分式: , ,
2.(1)x≠-2 (2)x≠ (3)x≠±2
3.(1)x=-7 (2)x=0 (3)x=-1
七、1.18x, ,a+b, , ; 整式:8x, a+b, ;
分式: ,
2. X = 3. x=-1
更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!