鲸罗书馆

《圆的面积》教学设计(精拣12篇)

jingluocom

更新时间:4周前

《圆的面积》教学设计(通用12篇)

《圆的面积》教学设计 第1篇

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的.半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。

  (2)半径为2厘米的圆的周长与面积相等。

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

《圆的面积》教学设计 第2篇

  教学内容浙教版小学数学第十一册教材P141—143、例1

  教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的'面积公式推导出圆面积计算公式。

  学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。

  教学目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能够利用圆面积公式进行计算。

  3.培养学生动手操作、观察分析、概括推理的能力。

  教学重点圆面积计算公式的推导和利用公式进行正确计算。

  教学难点极限思想的渗透与圆面积公式的推导过程。

  教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等

  教学过程

  一、创设情境

  1.播放录像:美丽的校园景色、各种形状的花坛。

  问:你能计算出它们的占地面积吗?

  2.媒体演示(从各种形状的花坛中提炼出下面的图形)。

  (1)学生说出这些图形的面积计算公式。

  (2)用什么方法推导出三角形面积计算公式的?

  教师板书:

  剪拼

  要学的图形 已学的图形

  转化

  3.媒体出示圆形。

  今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)

  (板书课题:圆的面积)

  二、公式推导

  1.提出问题,制定方案

  (1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?

  (2)小组汇报:

  a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。

  b.面临的困难:如何曲线变直线。

  2.操作实验,分析问题

  (1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。

  (2)交流汇报。

  ①学生汇报剪拼过程,同时教师贴示。

  ②观察思考(教师有意选取一组剪拼成长方形的来交流)

  a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?

  b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?

  (教师媒体演示)

  c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?

  d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?

  3.推导公式,解决问题

  (1)观察讨论

  当圆转化成近似长方形时,你们发现它们之间有什么联系?

  (2)学生填实验报告。

  (3)学生交流汇报推导过程。

  (4)观看课件演示过程,并请同桌两位同学互说一次。

  三、公式应用

  1.简介千古绝技:中国古代数学家的割圆术。

  公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……

  2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。

  3.根据下面所给的条件,求圆的面积。

  (1)直径10厘米(2)周长12。56

  (生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)

  四、课堂总结

  1.这节课你学会了什么?

  2.这节课你有什么感受?

  五、课外拓展

  1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?

  2.已知正方形的面积是25平方厘米,求圆的面积。如图:

  3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)

  板书设计

  圆的面积

  圆所占平面的大小叫圆的面积。

  长方形的面积 = 长 × 宽

  圆的面积 = πr × r = πr2

  (周长的一半)

  剪拼

  要学的图形 已学的图形

  转化

《圆的面积》教学设计 第3篇

  【教学内容】:

  义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

  【教学目标】:

  知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

  过程与方法:

  (1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

  (2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

  情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

  【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

  【教具准备】:

  多媒体课件,圆片等。

  【教学方法】:自主探究法

  【教学过程】:

  一.以旧引新、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下三角形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

  二、动手实践、探索新知

  1、补充感知、理解意义

  (1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

  (2)同学们再用手指一指自己带来的圆的面积。

  (3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

  2、比较猜测、探明方向

  (1)提问:猜猜圆面积的大小与什么有关?

  (2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的'面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

  (3)活动要求:折一折手中的圆片能折出什么图形?

  (4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

  ①圆和(近似的)长方形有什么关系?(形状变,面积相等)

  ②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

  (教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

  把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

  小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

  3、圆的面积计算公式的推导。

  小组合作讨论以下问题:

  a、拼成的近似长方形的面积和圆的面积有什么关系?

  b、长方形的长与圆的周长有什么关系?

  c、长方形的宽与圆的半径有什么关系?

  d、你能找出圆的面积计算方法吗?

  长方形的面积=长×宽,

  所以圆的面积=×=

  学生在小组内积极讨论,探究、分析,并将结果汇报。

  长方形的长是圆周长的一半,长方形的宽是半径(r)

  因为长方形的面积=长×宽

  所以圆的面积=∏r×r=r2

  齐读公式S=∏r2强调r2=r×r(表示2个r相乘)

  同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.

  三、巩固运用、形成技能

  1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

  2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

  (1)课件出示例1

  (2)学生独立审题

  (3)教师板演解答过程.

  3、求下面圆的面积r=3md=5cm

  ①学生独立完成

  ②集体核对时,强调要先算平方再算乘法。

  4、判断题(课件出示)

  5、拓展练习:机动题

  小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

  四、课堂总结、深化认知:这节课,你有哪些收获?

  五、作业:练习十六2.4题.

  附:板书

  圆的面积

  长方形面积=长×宽

  ↓↓↓

  圆的面积=圆周长的一半×半径

  =∏r×r

  =∏r2

  例1:r:20÷2=10(m)

  S:3.14×102=314(m2)

  答:它的面积是314m2。

《圆的面积》教学设计 第4篇

  教学目标:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重点:

  利用圆面积计算公式正确计算圆的面积。

  教学难点:

  圆面积计算公式的推导。

  教具准备:

  等分圆教具。

  学具准备:

  分成十六等分的圆形纸片。

  教学过程:

  一.谈话导入新课

  同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。

  二.游戏激趣,理解圆的面积的概念。

  师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?

  生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。

  师:现在大家知道男生为什么涂得慢呢?

  生:男同学涂的面积大。

  三.探究合作,推导圆的面积公式

  1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?

  生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?

  2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。

  3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的.内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。

  四.巩固新知,实践运用

  1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。

  2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?

  五.总结

  1、这节课你们有什么收获?

  2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。

《圆的面积》教学设计 第5篇

  教学理念:

  本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

  接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

  教学目标:

  1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

  2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

  3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

  4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

  教学重点:

  运用圆的面积计算公式解决实际问题。

  教学难点:

  理解把圆转化为长方形推导出计算公式的过程。

  教学准备:

  多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

  教学过程:

  一、创设问题情境,激发学生学习兴趣 。

  1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

  2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的? (电脑课件演示)

  [设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的'认识,从而激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。]

  二、合作交流,探究新知。

  1、出示圆:

  (1)让学生说出圆周长的概念,并指出来。

  (2)想一想:圆的面积指什么?让学生动手摸一摸。

  (揭示:圆所占平面的大小叫做圆的面积。)

  (3)对比圆的周长和面积,让学生感受他们的区别。

  同时引出课题——圆的面积。

  [设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

  2、推导圆面积的计算公式。

  (1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

  (2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

  [设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

  (3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  ①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

  ②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

  [设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

  ③当圆转化成近似长方形时,你们发现它们之间有什么联系?

  课件演示:

  师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份又会是什么情形?

  ④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

  [设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

  (4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

  ①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

  ②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

  ③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

  (5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

  (6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

  [设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

  三、实践运用,巩固知识。

  1、已知圆的半径,求圆的面积。

  判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

  =3.14×5×2=31.4(米)

  (学生先独立思考,再汇报交流,共同修改。)

  强调:半径的平方是指两个半径相乘。

  2、已知圆的直径,求圆的面积。(教学例1)

  ①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

  ②学生汇报计算方法,要强调首先算什么?

  ③打开书本P68补充例1。

  3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

  小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

  ①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

  ②根据圆的周长公式,师生间推导出求半径的计算方法。

  ③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

  4、一个圆形溜冰场,半径30米。

  (1)这个溜冰场的面积是多少平方米?

  (2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

  提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

  [设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

  四、总结评价,拓展延伸。

  1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

  2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

《圆的面积》教学设计 第6篇

  教学内容:

  新人教版数学六年级上册第67—68页,圆的面积。

  教学目标:

  1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

  2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

  3、培养认真观察的习惯和自主探究、合作交流的能力。

  教学重难点:

  1、运用圆的面积计算公式解决实际问题。

  2、理解圆的面积计算公式的推导过程。

  教学准备:多媒体课件

  教学方法:自主探究,合作交流

  教学过程:

  一、小测验:

  1、一个圆的直径是6厘米,这个圆的半径是厘米,周长是厘米。

  2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是米,半径是米。

  二、问题引入

  1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

  2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

  3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)

  三、探索新知

  (一)复习,平面图形面积的计算方法。

  (二)探索圆面积的计算方法

  1、我们一起来推导圆的面积公式吧!

  2、利用多媒体课件展示圆的面积公式的推导过程。

  (1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

  (2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

  3、在图形的拼凑与转化中,同时观察与思考以下问题。

  a、拼凑中,圆在转化成什么图形?

  b、长方形的长与圆的周长有什么关系?长方形的宽与圆的'半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

  4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)

  因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

  如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2

  5、学生齐读公式

  S= πr2

  教师强调r2= r × r(表示2个r相乘)

  (三)应用公式

  一个圆的半径是4厘米。它的面积是多少平方厘米?

  思考:

  1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

  2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

  3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

  例

  1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

  2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

  3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

  4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

  (四)知识应用

  1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

  课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

  2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

  3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

  四、课堂总结:这节课,你有哪些收获?

  说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

  五、作业布置:

  教材第71页,练习十五,第1题~第4题。

《圆的面积》教学设计 第7篇

  教学内容:圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:正确计算圆的面积。

  教学难点:圆面积公式的推导。

  教具准备:多媒体课件,圆片。

  学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  3. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

  (2)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  s=πr × r

  s=πr2

  师小结公式 s=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成做一做的第1、2题。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(cai课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  板书设计:

  圆的面积

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  s=πr×r

  s=πr2

《圆的面积》教学设计 第8篇

  教学目的

  1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的 计算 公式;

  2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点 :圆面积计算

  教学难点 :公式以及推导。

  教学过程

  一、复习并引入课题。

  1.口算:2π 9.42÷π 12.56÷π

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是 6.2米,宽是 4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1.圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图) 问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是: 再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr2

  3.圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是 20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。) 教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是 2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

  回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径 10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。 板书

  圆的面积

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr

《圆的面积》教学设计 第9篇

  一、说教材

  1、说课内容:说课内容是西师版六年制小学数学第十一册第二单元中<<圆的面积计算>>第一课时。

  2、教材、学生情况分析:

  这是一节概念与计算相结合研究几何形体的教学内容,我认为该内容与教材前后的内容有着密切的关系.它是在学生学习了平面直线图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识和绘制统计图作了铺垫。

  从学生的知识水平来看,从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。从空间观念方面来说,进入了一个新的领域.

  3、教学目标

  遵循教材的编写意图并从学生的知识水平以及生活经验出发,我拟订这节课的教学目标为:

  (1)知识与技能目标:推导出圆面积计算的公式,并会用公式计算圆的面积;

  (2)过程与方法目标:进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。

  (3)情感态度与价值观目标:注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。

  基于以上的教学目标:把教学重点定为是掌握圆面积的计算公式;

  教学难点则是圆面积计算公式的推导和极限思想的渗透;

  教学关键是弄清拼成的图形的各部分与原来圆的关系。

  二、说教学策略

  为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学我以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:(具体教学策略请看教学过程部分)

  1.知识呈现生活化。以云南景洪的曼飞白塔的塔基为圆柱形石座,底面周长是42.6米,这座塔至少占地多少平方米。让生活数学这一条红线贯穿于课的始终.

  2.学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。

  3.学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。

  4.学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。

  从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

  三、教学过程

  秉着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。

  (一)创设情境,激趣引入

  兴趣是学生积极主动地获取知识,形成技能的重要心理基础,为了使学生乐学,在第一环节中,我首先通过教材插图,从而引出课题:圆的面积计算。

  在这一环节中,我通过情景设置,拉近数学知识与现实生活的距离,从而激发了学生的求知,为下一环节做好铺垫。

  (二)引导探究,构建模型

  第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向----化曲为直,扫清障碍----实验探究,推导公式----展示成果,体验成功----首尾呼应,巩固新知五大步进行:

  第一步:启发猜想,明确方向。

  鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想:“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,想到可以将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。

  第二步:化曲为直,扫清障碍。

  在第二步:化曲为直,扫清障碍教学中。我首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段。这一规律的发现,不仅向学生渗透了极限的思想,更要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。

  第三步:实验探究,推导公式。

  在第三步:实验探究,推导公式教学中。我首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。

  第四步:展示成果,体验成功。

  在学生小组讨论后,我将引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似平行四边形,长方形,三角形和梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。

  首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导,得出圆面积等于周长的一半乘以半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。

  第五步:首尾呼应,巩固新知

  在学生获得圆的面积计算公式后,我进入第五步:首尾呼应,巩固新知的教学。这座塔至少占地多少平方米;求出它的面积。从而达到了对新知的巩固。

  四、分层训练,拓展思维

  为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。

《圆的面积》教学设计 第10篇

  一.教材分析

  1.教材内容

  本节内容是从一个小狗活动的实例出发结合学生的生活经验引出圆的面积。

  2.教材的地位和作用

  在此之前,学生已经学过了圆的周长,弧长等有关概念、公式,在这个基础上,学好本节课,掌握圆的面积公式和有关计算,为学生今后学习和圆有关的图形的面积奠定了基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。

  二.目标分析

  在素质教育背景下的数学教学应以学生发展为本,培养能力为重,同时也要强化应用意识,所以教学目标的确定应建立在学生的学习过程上,而预备年级的学生只具备一定的形象思维能力,抽象思维能力还不完备,所以根据本节课的特点确定如下教学目标.

  1.知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题.

  2.能力目标:

  使学生了解从未知到已知的转化过程,逐渐培养学生的抽象思维能力。

  3.情感目标:

  通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三.重点难点分析

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,弧长无限的接近线段的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四.教法分析

  1.教法分析:

  针对刚迈入初中的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生同甘共苦一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

  2.学法指导

  通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的'同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  3.教学手段

  为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

  五.教学过程

  1.复习(1)长方形面积公式

  (2)平行四边形面积公式

  平行四边形面积公式的求法是通过割补转化为长方形面积来解决。

  2.创设问题情景,引入课题

  一只小狗被它的主人用一根长1米的绳子栓在草地上,问小狗能够活动的范围有多大?

  问题:1.小狗能够活动的最大面积是一个什么图形?

  2.如何求圆的面积呢?

  3.师生互动,探索新知

  (1)引导:

  平行四边形面积可以转化成长方形面积,那么圆的面积是否也可以转化成长方形面积来解决呢?

  (2)实验操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。

  (3)动画展示

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  当我们把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (4)得出结论:

  启发1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  启发2:长方形的长、宽与圆有什么关系呢?

  再次展示动画。

  设圆的半径为r

  启发学生寻找规律,由圆的周长为2pi;r,推导得出长方形长为pi;r,宽为r,

  圆的面积。

  4.实际应用

  (1)利用公式解决实际问题:

  求小狗活动范围的最大面积问题?

  (2)例题讲解

  例题1:已知一个圆的直径为24分米,求这个圆的面积

  注意书写格式:1)写出公式2)代入数字3)计算结果4)写出单位。

  (3)巩固思考

  小明家新买了一个圆桌,妈妈让他求桌面的面积。你能够帮助小明回答吗?

  (4)巩固练习

  例2.一个圆形花坛,周围栏杆的长是25.12米,这个花坛的种植面积是多少?(pi;asymp;3.14)

  练习:

  1.判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。

  (2)半径为2厘米的圆的周长与面积相等。

  2.把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  40cm

  3.一块直径为40厘米的圆形铝板上,

  有4个半径为5厘米的小孔,这块铝板

  的面积是多少

  5.归纳小结

  为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从以下方面小结,学生先回答,教师归纳总结。体现学生为主体,教师为主导的教学思想。

  (1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  6.布置作业

  P105练习3.3(1)2,3。

  P106习题3.31,2。

  六.评价分析:

  精心设计问题情景,积极引导,启发学生参与公式的形式过程,但课堂教学是一个动态过程,学生的思维又常常受到课堂气氛,突发事件的影响,所以教师应根据课堂实施和学生反馈的信息(举手情况,题目的解答情况,学生讨论小结的结果情况)因势利导,随机应变,调整好教学环节,使课堂教学效果达到最佳状态.同时也应该根据学生作业反馈的信息及时作好教后感笔录,以便今后更好地改进教学,提高教学质量。圆的面积第二节课的目的主要是巩固练习。

《圆的面积》教学设计 第11篇

  教学目标:

  1、 让学生知道什么是圆的周长。

  2、 理解并掌握圆周率的意义和近似值。

  3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

  5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  6、 培养学生的观察、比较、分析、综合及动手操作能力。

  教学重点:

  理解和掌握圆的周长的计算公式。

  教学难点:

  对圆周率的认识。

  教学准备:

  1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、 教师准备图片。

  教学过程:

  一、激情导入

  1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?

  2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

  二、探究新知

  (一) 复习正方形的周长,猜想圆的周长可能和什么有关系。

  1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

  2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

  3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)

  4、 猜想:你觉得圆的周长可能和什么有关系?

  (二) 测量验证

  1、 教师提问:你能不能想出一个好办法来测量它的周长呢?

  ① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

  ② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

  2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ②观察数据,对比发现。

  提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  3、 比较数据,揭示关系

  正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

  (三) 介绍圆周率

  1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

  2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

  3、 小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

  圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

  (四) 推导公式

  1、 到现在,你会计算圆的周长吗?怎样算?

  2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

  3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?

  三、运用公式解决问题

  1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

  2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  3、 钟面直径40厘米,钟面的周长是多少厘米?

  4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?

  5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  四、课堂小结

  通过这节课的学习你想和大家说点什么?

  这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。

《圆的面积》教学设计 第12篇

  尊敬的各位领导老师:

  大家好!

  今天我说课的内容是全日制小学数学课本第十一册第一单元"圆的面积"。

  一、说教材

  教材分析

  圆是小学阶段的最后的一个平面图形,通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。圆的面积是在学生认识了圆的特征,掌握了圆的周长的计算,以及学过了直线图形的面积计算方法的基础上进行教学的。通过对圆的面积有关知识学习,不仅加深学生对周围事物的理解,也为以后学习圆柱,圆锥和绘制简单的扇形统计图打下基础。

  学情分析

  学生从认识直线图形发展到认识曲线图形,是一次飞跃,但从学生思维特点的角度看,六年级学生以抽象思维为主,具有一定的逻辑思维能力,这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化数学思想的能力。所以,圆的面积公式的推导过程以及圆的面积公式的应用是本节课的重点,在圆的面积公式推导过程中,对“化曲为直”、“化圆为方”,的理解是本节课的难点。

  教学目标分析

  在素质教育背景下的数学教学应以学生发展为本,培养能力为重,同时也要强化应用意识,所以根据本节课的特点确定如下教学目标.

  知识与技能——使学生理解和掌握圆的面积的计算公式,沟通圆与其它图形之间的联系,培养学生观察、操作、分析、概括的能力以及逻辑推理能力,培养学生灵活运用公式解决实际问题的能力。

  过程与方法——引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、以直代曲等数学思想方法,发展学生的空间观念。

  情感态度价值观——培养学生认真观察、深入思考的良好思维品质,锻炼学生面对困难勇于克服、锲而不舍的精神。

  二、说教法

  针对六年级学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

  为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

  三、说学法

  通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性、积极性,以及良好的学习习惯的养成。

  四、说教学过程

  基于以上认识,为了有效的突出重点,突破难点,顺利的实现教学目标,我设计了以下五个教学环节:

  第一环节 创设情景,引入课题

  出示课件“在一片绿草地上,一匹小马被它的主人用一根长2米的绳子栓在一棵小树上,它的主人想考考我们”从而激发学生的学习兴趣,同时并对圆的周长进行复习,引入新课。使学生对所学的内容产生内在的需要和好奇心,怀着这份强烈的求知欲望走进学习新知识的课堂。

  第二环节 转化思想,推导公式

  通过回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析,对比各个公式推导过程的共同点就是将要学的图形转化为已学过的图形,接着帮助和指导学生动手操作,通过分一分、剪一剪、想一想、议一议来认识圆面积的推导过程。既充分利用教材,又让学生学会自主探究,培养了学生的自学能力,充分体现学生的自主性。

  教师先将将圆平均分成4份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成8、16、32等份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时显示将圆等分的过程及拼成的长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用教具显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。教具的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

  第三个环节:运用公式,解决问题。

  完成例1、例2,要求学生运用公式正确计算,注意书写格式和运算顺序。两道例题由浅入深,由数学到生活,由具体到抽象的设计,充分利用学生已有的生活经验引导学生把所学的数学知识用到现实中去,去体会数学在现实生活中的应用价值。

  第四个环节:活用新知,扎实练习。

  对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出半径和直径求圆的面积。第二层次的练习是通过认真分析判断正误。这一组知识运用练习体现了一定的密度和梯度,重在培养学生的学习习惯,巩固所学知识,提高学生解决圆的面积的问题必须先知道圆的半径,再求圆的面积。

  第五个环节:全课总结

  让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?通过对全课的回顾总结,加深对知识的理解,同时也培养了学生的概括能力,使学生的思维能力得到进一步的提高。

  第六个环节:实践运用,拓展练习

  出示一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们用想到的方法算一算这个圆环的面积,将所学知识运用到实际生活中,从而培养学生应用数学的意识和综合运用知识解决问题的能力。

  五、教学效果预测

  圆的面积一节的教学设计坚持以“促进学生主动发展”的理念为指导,以发展学生的概括抽象能力、培养学生良好的数学思维为核心,以独立思考、合作交流为主线,着力引导学生在自主探究中去推导、应用圆的面积公式。努力促进学生知识与技能,过程与方法、情感与态度的和谐发展,预计会受到良好的教学效果,说课中有不当之处,请各位领导老师批评指正。

更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!

初二语文上册教学设计(精拣11篇)

八年级语文上册教学设计(精拣11第)  作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,借助教案可以让教学工作更科

《老王》教案素材设计(精拣11篇)

《老王》教案(精拣11第)  作为一名优秀的教育工作者,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。那

教案素材设计:初二语文与朱元思书(精简13篇)

教案:八年级语文与朱元思书(精简13第)  作为一名教师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该

《时间的脚印》教案素材设计(精拣12篇)

《时间的脚印》教案(精拣12第)  作为一位杰出的教职工,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学

云南的歌会教案素材设计(精拣8篇)

云南的歌会教案(精拣8第)  作为一位兢兢业业的人民教师,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活

《数学乐园》教学设计(精拣13篇)

《数学乐园》教学设计(通用13篇)《数学乐园》教学设计 第1篇  活动内容:人民教育出版社小学数学一年级82---83页

秋天的果园(精拣12篇)

秋天的果园(通用12篇)秋天的果园 第1篇  教学目标:  1、学会7个生字:秋、园、红、黄、劳、动、笑;认识4个偏旁:

《统计》教案(精简13篇)

《统计》教案(精选13篇)《统计》教案 第1篇  教学目标  1、巩固数据的收集、整理、描述和分析的相关知识,熟练填写简

圆的标准方程(精拣13篇)

圆的标准方程(通用13篇)圆的标准方程 第1篇  1、教学目标  (1)知识目标:   1、在平面直角坐标系中,探索并掌

算术平均数与几何平均数(精简15篇)

算术平均数与几何平均数(精选15篇)算术平均数与几何平均数 第1篇  第一课时  一、教材分析  (一)教材所处的地位和

复制 微信 置顶

添加微信号