鲸罗书馆

圆的标准方程教案(精简7篇)

jingluocom

更新时间:4周前

圆的标准方程教案(精选7篇)

圆的标准方程教案 第1篇

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的.已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

圆的标准方程教案 第2篇

  一、教材分析

  本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。

  二、教学目标

  1、 知识目标:使学生掌握圆的标准方程并依据不同条件求得圆的方程。

  2、 能力目标:

  (1)使学生初步熟悉圆的标准方程的用途和用法。

  (2)体会数形结合思想,形成代数方法处理几何问题能力(3)培养学生观察、比较、分析、概括的思维能力。

  三、重点、难点、疑点及解决办法

  1、重点:圆的标准方程的推导过程和圆的标准方程特点的明确。

  2、难点:圆的方程的应用。

  3、解决办法 充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。

  四、学法

  在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法。

  五、教法

  先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。

  六、教学步骤

  (一)导入新课 首先让学生回顾上一章的直线的方程是怎么样求出的。

  (二)讲授新课

  1、新知识学习在学生回顾确定直线的要素——两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素——圆心位置与半径大小,即圆是这样的一个点的集合在平面直角坐标系中,圆心 可以用坐标 表示出来,半径长 是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点 的坐标 满足的关系式。经过化简,得到圆的标准方程

  2、知识巩固

  学生口答下面问题

  1、求下列各圆的标准方程。

  ① 圆心坐标为(-4,-3)半径长度为6;

  ② 圆心坐标为(2,5)半径长度为3;2、求下列各圆的圆心坐标和半径。

  3、知识的延伸根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的点不在曲线上,为了使学生体验曲线和方程的思想,加深对圆的标准方程的理解,教科书配置了例1。

  例1要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何。

  (三)知识的运用

  例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。由于圆的标准方程含有三个参数 , ,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程

  (四)小结一、知识概括

  1、 圆心为 ,半径长度为 的圆的标准方程为

  2、 判断给出一个点,这个点与圆什么关系。

  3、 怎样建立一个坐标系,然后求出圆的标准方程。

  4、思想方法

  (1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。

  (2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。

  五、布置作业(第127页2、3、4题)

圆的标准方程教案 第3篇

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:圆的标准方程

  教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)<,点在圆内

  解:

  例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

  师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

  解:

  例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

  师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

  解:

  总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

  1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程。

  ②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

  (四)、课堂练习(课本P120练习1,2,3,4)

  归纳小结:

  1、圆的标准方程。

  2、点与圆的位置关系的判断方法。

  3、根据已知条件求圆的标准方程的方法。

  作业布置:课本习题4。1A组第2,3,4题。

  课后记:

圆的标准方程教案 第4篇

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:圆的标准方程

  教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79

圆的标准方程教案 第5篇

  1。教学目标

  (1)知识目标: 1。在平面直角坐标系中,探索并掌握圆的标准方程;

  2。会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

  (2)能力目标: 1。进一步培养学生用解析法研究几何问题的能力;

  2。使学生加深对数形结合思想和待定系数法的理解;

  3。增强学生用数学的意识。

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

  2。教学重点。难点

  (1)教学重点:圆的标准方程的求法及其应用。

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题。

  3。教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2。7代入,得 。

  即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1。根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2。如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}

  由两点间的距离公式,点M适合的条件可表示为 ①

  把①式两边平方,得(x?a)2 (y?b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

圆的标准方程教案 第6篇

  教学目标

  (一)知识目标

  1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;

  2.理解并掌握切线方程的探求过程和方法。

  (二)能力目标

  1.进一步培养学生用坐标法研究几何问题的能力;

  2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;

  3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。

  (三)情感目标

  通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。

  教学重、难点

  (一)教学重点

  圆的标准方程的理解、掌握。

  (二)教学难点

  圆的标准方程的应用。

  教学方法

  选用引导?探究式的教学方法。

  教学手段

  借助多媒体进行辅助教学。

  教学过程

  Ⅰ.复习提问、引入课题

  师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹?

  生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ?p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]

  师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]

  师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.

  若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?

  生:x2+y2=r2.

  师:你是怎样得到的?(引导启发)圆上的点满足什么条件?

  生:圆上的任一点到圆心的距离等于半径。即 ,亦即 x2+y2=r2.

  师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?

  生:此圆是到点C(a,b)的距离等于半径r的点的集合,

  由两点间的距离公式得

  即:(x-a)2+(y-b)2= r2

  Ⅱ.讲授新课、尝试练习

  师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程.

  特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.

  师:圆的标准方程由哪些量决定?

  生:由圆心坐标(a,b)及半径r决定。

  师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。

  1、 写出下列各圆的标准方程:[多媒体演示]

  ① 圆心在原点,半径是3 :________________________

  ② 圆心在点C(3,4),半径是 :______________________

  ③ 经过点P(5,1),圆心在点C(8,-3):_______________________

  2、 变式题[多媒体演示]

  ① 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。

  答案:(x-1)2 + (y-3)2 =

  ② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。

  答案: C(a,0), r=|a|

  Ⅲ.例题分析、巩固应用

  师:下面我们通过例题来看看圆的标准方程的应用.

  [例1] 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。

  师:你打算怎样求过P点的切线方程?

  生:要求经过一点的直线方程,可利用直线的点斜式来求。

  师: 斜率怎样求?

  生:。。。。。。

  师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)

  生:切线与过切点的半径垂直,故斜率互为负倒数

  半径OP的斜率 K1=, 所以切线的斜率 K=-=-

  所以所求切线方程:y-= -(x-)

  即:x+y=17 (教师板书)

  师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?

  生:。。。。。。

  师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?

  (若看不出来,再看一例)

  [例1/] 圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。

  答案:2x+3y=13 即:2x+3y-13=0

  师:发现规律了吗?(学生纷纷举手回答)

  生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。

  师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!

  生:xox+yoy=r2.

  师:这个猜想对不对?若对,可否给出证明?

  生:。。。。。。

  [例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。

  解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数

  ∵半径OP的斜率 K1=,∴切线的斜率 K=-=-

  ∴所求切线方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (教师板书)

  当点P在坐标轴上时,可以验证上面方程同样适用。

  归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程

  [例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)

  引导学生分析,共同完成解答。

  师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。

  解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为

  (0,b),半径为r,那么圆的方程是 x2+(y-b)2=r2.

  ∵P(0,4),B(10,0)都在圆上,于是得到方程组:

  解得:b=-10.5 ,r2=14.52

  ∴圆的方程为 x2+(y+10.5)2=14.52.

  将P2的横坐标x=-2代入圆的标准方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79

圆的标准方程教案 第7篇

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  (五)小结反思(拓展引申)

  1.课堂小结:

  (1)圆心为c(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

  (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

  (4) 求解应用问题的一般方法

  2.分层作业:(a)巩固型作业:课本p81-82:(习题7.6)1.2.4

  (b)思维拓展型作业:

  试推导过圆 上一点 的切线方程.

  3.激发新疑:

  问题七:1.把圆的标准方程展开后是什么形式?

  2.方程: 的曲线是什么图形?

  教学设计说明

  圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了

  文章来源自3edu教育网兴趣、增强了信心

更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!

初二语文上册教学设计(精拣11篇)

八年级语文上册教学设计(精拣11第)  作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,借助教案可以让教学工作更科

《老王》教案素材设计(精拣11篇)

《老王》教案(精拣11第)  作为一名优秀的教育工作者,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。那

教案素材设计:初二语文与朱元思书(精简13篇)

教案:八年级语文与朱元思书(精简13第)  作为一名教师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该

《时间的脚印》教案素材设计(精拣12篇)

《时间的脚印》教案(精拣12第)  作为一位杰出的教职工,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学

云南的歌会教案素材设计(精拣8篇)

云南的歌会教案(精拣8第)  作为一位兢兢业业的人民教师,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活

《圆的面积》教学设计(精拣12篇)

《圆的面积》教学设计(通用12篇)《圆的面积》教学设计 第1篇  一、教材内容:  本节课内容是求圆的面积  二、教学目

圆的标准方程(精拣13篇)

圆的标准方程(通用13篇)圆的标准方程 第1篇  1、教学目标  (1)知识目标:   1、在平面直角坐标系中,探索并掌

点到直线的距离教案(精简2篇)

点到直线的距离教案(精选2篇)点到直线的距离教案 第1篇  一. 教学目标  1.教材分析  ⑴ 教学内容  《点到

北师大版数学生活中的图形(精拣2篇)

北师大版数学生活中的图形(通用2篇)北师大版数学生活中的图形 第1篇  北师大版数学(七年级上)新教材教案 生活中的图形

二元一次方程与一次函数(精简10篇)

二元一次方程与一次函数(精选10篇)二元一次方程与一次函数 第1篇  本节教学内容是《二元一次方程与一次函数》,这节课以

复制 微信 置顶

添加微信号